首页|基于SBAS-InSAR技术的城市轨道交通隧道形变监测

基于SBAS-InSAR技术的城市轨道交通隧道形变监测

扫码查看
受到隧道内的灯光条件、尘土、烟雾等的影响,扫描数据准确性和可靠性降低,导致形变监测产生误差,因此,设计基于小基线集干涉合成孔径雷达(SBAS-InSAR)技术的城市轨道交通隧道形变监测方法.为研究城市轨道交通隧道形变问题,选用合成孔径雷达(SAR)Sentinel-1 A的Single Look Complex数据,采用的影像包括下降轨道62轨与上升轨道55轨.数字高程模型(DEM)选用先进星载热发射和反射辐射仪全球数字高程模型(ASTER GDEM).结合几何配准方法与影像相关性配准方法实施SAR影像的粗配准.在粗配准的基础上,选用增强谱分集方法实施精配准.为克服常规合成孔径雷达干涉测量(InSAR)技术在空间基线过长时出现的问题,采用SBAS-InSAR技术获取城市轨道交通隧道的形变信息,提高数据在时间采样上的分辨率.案例测试结果表明,设计方法的形变监测结果均较为准确.
Deformation Monitoring of Urban Rail Transit Tunnels Based on SBAS-InSAR Technology
Due to the influence of lighting conditions,dust and smoke inside the tunnel,the accuracy and reliability of scanning data are reduced,resulting in errors in deformation monitoring.Therefore,a deformation monitoring method for urban rail transit tunnels based on small baseline subset interferometric synthetic aperture radar(SBAS-InSAR)technology is designed.To study the deformation problem of urban rail transit tunnels,Single Look Complex data of synthetic aperture radar(SAR)Sentinel-IA is selected,and the images used includ descending track 62 and ascending track 55.The advanced spaceborne ther-mal emission and reflection radiometer global digital elevation model(ASTER GDEM)is selected for digital elevation model(DEM).Combining geometric registration methods with image correlation registration methods,the system implements coarse registration of SAR images.On the basis of coarse registration,fine registration is implemented by the enhanced spectral diver-sity method.To overcome the problem that the conventional interferometric synthetic aperture radar(InSAR)technology has when the spatial baselines are longer,the SBAS-InSAR technology is adopted to obtain deformation information of urban rail transit tunnels and improve the resolution of data in time sampling.The case test results show that the deformation monitoring results of the designed method are relatively accurate.

Sentinel-1A radarSBAS-InSAR technologyurban rail transittunnel deformation monitoring

聂柳、李阳、王武、刘兵、陈春度

展开 >

南昌中铁穗城轨道交通建设运营有限公司,江西,南昌 330038

Sentinel-1A SBAS-InSAR技术 城市轨道交通 隧道形变监测

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(12)