首页|基于机器学习的ERP财务管理系统异常检测

基于机器学习的ERP财务管理系统异常检测

扫码查看
财务管理关系到财务安全,对医院正常化运转影响巨大.传统财务管理异常检测存在主观性强、准确率低的问题,及时、精准检测医院财务管理系统异常至关重要.因此,对医院ERP财务管理系统模块进行分析,基于D-S证据理论构建财务管理系统异常检测模型,并将提出的财务管理系统异常检测模型用于某三甲医院财务管理系统历史数据的分析.将此模型与支持向量机模型进行对比,结果表明,D-S证据理论构建的系统异常检测模型具有更佳的异常检测性能,这为提升医院ERP财务管理系统异常检测的准确率、确保医院财务管理决策提供了有益的参考.
Abnormality Detection of ERP Financial Management System Based on Machine Learning
Financial management is related to financial security and has a significant impact on the normal operation of hospitals.Traditional financial management abnormality detection has the problems of strong subjectivity and low accuracy.Timely and accurate detection of hospital financial management system abnormality is crucial.This paper analyzes the modules of the hospi-tal ERP financial management system and constructs an abnormality detection model for the financial management system based on the D-S evidence theory.The proposed abnormality detection model for financial management systems is applied to analyze historical data in a third class hospital's financial management system.Compared with the support vector machine model,the results show that the system abnormality detection model constructed by D-S evidence theory has better abnormality detection performance,which provides a reference for improving the accuracy of abnormality detection in the hospital ERP financial man-agement system and ensuring the improvement of the hospital's financial management level.

financial management systemabnormality detectionD-S evidence theory

陈鹏岗、李游、曹海信、王科

展开 >

西安交通大学第二附属医院,陕西,西安 710000

中陕核工业集团地质调查院有限公司,陕西,西安 710100

西安石油大学,体育学院,陕西,西安 710000

山东理工大学,计算机科学与技术学院,山东,淄博 255000

展开 >

财务管理系统 异常检测 D-S证据理论

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(12)