首页|面向新质生产力的一种期刊网页数据挖掘决策树算法研究

面向新质生产力的一种期刊网页数据挖掘决策树算法研究

扫码查看
我国目前的期刊网站、集群化期刊平台基本为结构功能单一的被动论文检索下载或简单地罗列知识结构图,期刊网页高价值信息的智能数据挖掘和主动获取尚未开发.从介绍国外期刊网页智能数据挖掘研究现状、自相关函数的基本概念及相关理论出发,利用自相关函数提出一种期刊网页数据挖掘决策树算法.仿真实验表明,所提算法减少了 CPU和I/O的运行时间,能够在处理器数量相同的情况下得到最优加速比,期刊网页数据节点访问更加全面,提高了数据查询效率.为期刊网页数据挖掘智能信息查询提供了一种个性化的高效检索工具,随着数据产品和信息产品在新型生产关系和生产环节的全方位、全过程渗透,将为我国新质生产力发展提供重要支撑.
Research on a Journal Web Page Data Mining Decision Tree Algorithm for New Quality Productive Forces
At present,the journal websites and clustered journal platforms in China are mostly passive paper retrieval and down-load with a single structure and function or simply list knowledge structure diagrams.The intelligent data mining and active ac-quisition of high-value information on journal web pages have not yet been developed.This article introduces the current re-search status of intelligent data mining on foreign journal web pages,the basic concepts and related theories of autocorrelation functions,and proposes a decision tree algorithm for journal web page data mining using autocorrelation functions.Simulation experiment shows that by reducing the running time of CPU and I/O,the optimal acceleration ratio is obtained under the same number of processors,and the access to journal web data nodes is more comprehensive,improving data query efficiency.It pro-vides a personalized and efficient retrieval tool for intelligent information query in journal web data mining.With the all-round and full process penetration of data products and information products in new production relations and production links,it will also provide important support for the development of new quality productive forces.

journal web pagedata miningautocorrelation functiondecision tree

张树瑜

展开 >

上海航天控制技术研究所,上海,201109

期刊网页 数据挖掘 自相关函数 决策树

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(12)