首页|基于ADASYN-RF的用电安全隐患自适应分类识别方法

基于ADASYN-RF的用电安全隐患自适应分类识别方法

扫码查看
为了减少用电安全隐患可能带来的损失,为设备维修提供有效的参考数据,提出自适应合成抽样(ADASYN)—随机森林(RF)的用电安全隐患自适应分类识别方法.根据不同类型用电安全隐患的产生原理,设置对应的电流、电压特征作为分类识别标准.利用ADASYN算法自适应采集用电设备运行数据,提取电流谐波畸变率、电压不平衡度等用电设备运行特征.构建RF分类器,确定当前用电安全隐患类型,实现用电安全隐患的自适应分类识别.通过与传统识别方法的比较,优化设计方法的精准率、召回率和平均F值分别提高了 0.016、0.01和0.013,具有更优的识别性能.
Adaptive Classification and Identification Method for Electrical Safety Hazards Based on ADASYN-RF
In order to reduce the possible loss caused by electrical safety hazards and provide effective reference data for equip-ment maintenance,an adaptive classification and identification method for electrical safety hazards based on adaptive synthetic sampling(ADASYN)-random forest(RF)is proposed.According to the generation principle of different types of electrical safety hazards,this paper sets the corresponding current and voltage characteristics as the classification and identification criteria.ADASYN algorithm is used to adaptively collect the operating data of electrical equipment,and extract the operating character-istics of electrical equipment,such as current harmonic distortion rate and voltage imbalance.The RF classifier is constructed to determine the type of current electrical safety hazards,so as to realize the adaptive classification and identification of electri-cal safety hazards.Through comparison with traditional identification methods,it is concluded that the accuracy,recall and mean F value of the optimal design method are improved by 0.016,0.01 and 0.013,which has better identification perform-ance.

ADASYN-RFelectrical saftety hazardadaptive classificationidentification of safety hazard

康洁滢、舒一飞、樊博、史强、杨琦

展开 >

国网宁夏电力有限公司营销服务中心(国网宁夏电力有限公司计量中心),宁夏,银川 750001

ADASYN-RF 用电安全隐患 自适应分类 安全隐患识别

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(12)