无线电通信技术2024,Vol.50Issue(1) :193-202.DOI:10.3969/j.issn.1003-3114.2023.06.024

基于深度可分离卷积神经网络的轴承故障诊断模型

Bearing Fault Diagnosis Based on Deep Separable Convolutional Neural Network

金钰森 丁飞 陈竺 郑雁鹏 黄伟韬
无线电通信技术2024,Vol.50Issue(1) :193-202.DOI:10.3969/j.issn.1003-3114.2023.06.024

基于深度可分离卷积神经网络的轴承故障诊断模型

Bearing Fault Diagnosis Based on Deep Separable Convolutional Neural Network

金钰森 1丁飞 2陈竺 1郑雁鹏 3黄伟韬3
扫码查看

作者信息

  • 1. 南京邮电大学智慧物联网应用技术研究院,江苏南京 210003
  • 2. 南京邮电大学智慧物联网应用技术研究院,江苏南京 210003;上海市工业物联网与大数据专家工作站,上海 200233
  • 3. 上海市工业物联网与大数据专家工作站,上海 200233
  • 折叠

摘要

在现实工业环境中需要对设备故障做出快速准确的诊断,低时延和高准确度的要求使得传统卷积神经网络(Convolutional Neural Network,CNN)在故障诊断过程中受到严重制约.针对此问题,提出了 一种基于深度可分离卷积神经网络(Separable Convolutional Neural Network,SCNN)的轴承故障诊断模型,构建能够处理连续振动信号的主干CNN,通过对主干CNN中的卷积层进行可分离处理来构建SCNN,实现卷积过程的通道和区域的分离,减少卷积计算过程中所需的参数,从而降低计算时延;为SCNN引入残差层,通过残差连接来保证卷积迭代计算的准确率,避免网络层数过多而造成过拟合.为了对比所构建模型的有效性,将传统的VGG16和ResNet50网络进行一维重构来进行验证,并对分类处理后的CWRU故障轴承数据进行分析.结果显示该模型在保证识别准确率的同时有效地提高了故障诊断的效率.

Abstract

In real industrial environment,it is necessary to make fast and accurate diagnosis of equipment faults.Requirements of low latency and high accuracy make traditional Convolutional Neural Network(CNN)severely restricted in fault diagnosis process.To solve this problem,a bearing fault diagnosis model based on depth one-dimensional separable convolutional neural network is proposed.First,construct a backbone convolutional neural network that can directly process one-dimensional vibration signals.Then,a one-dimen-sional Separable Convolutional Neural Network(SCNN)is constructed by performing separable processing on the convolutional layer in the backbone CNN,which realizes separation of channels and regions in the convolution process,and reduces parameters required in the convolution calculation process,reducing the calculation delay thereby.Finally,in order to ensure the accuracy of diagnosis on the basis of reducing calculation delay,a residual layer is added to the constructed SCNN,and the accuracy of the convolution process is guaran-teed through residual connections.In order to compare the effectiveness of the constructed model,traditional VGG16 and ResNet50 net-works were reconstructed one-dimensionally for verification,and the classified CWRU fault bearing data were analyzed.Results show that the model can improve fault diagnosis efficiency while ensuring recognition accuracy.

关键词

故障诊断/滚动轴承/残差神经网络/可分离卷积神经网络

Key words

fault diagnosis/rolling bearing/residual neural network/SCNN

引用本文复制引用

基金项目

江苏省重点研发计划(BE2020084-1)

江苏省"六大人才高峰"高层次人才培养资助项目(DZXX-008)

南京邮电大学科研创新基金(NY220028)

南京邮电大学大学生创新训练计划项目(CXXYB2022281)

出版年

2024
无线电通信技术
中国电子科技集团公司第五十四研究所

无线电通信技术

北大核心
影响因子:0.745
ISSN:1003-3114
参考文献量3
段落导航相关论文