首页|智能反射面增强的多无人机辅助语义通信资源优化

智能反射面增强的多无人机辅助语义通信资源优化

扫码查看
无人机(Unmanned Aerial Vehicle,UAV)为无线通信系统提供了具有高成本效益的解决方案。进一步地,提出了一种新颖的智能反射面(Intelligent Reflecting Surface,IRS)增强多 UAV 语义通信系统。该系统包括配备 IRS 的UAV、移动边缘计算(Mobile Edge Computing,MEC)服务器和具有数据收集与局部语义特征提取功能的 UAV。通过 IRS优化信号反射显著改善了UAV与MEC服务器的通信质量。所构建的问题涉及多UAV轨迹、IRS反射系数和语义符号数量联合优化,以最大限度地减少传输延迟。为解决该非凸优化问题,本文引入了深度强化学习(Deep Reinforce Learn-ing,DRL)算法,包括对偶双深度Q网络(Dueling Double Deep Q Network,D3 QN)用于解决离散动作空间问题,如UAV轨迹优化和语义符号数量优化;深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)用于解决连续动作空间问题,如IRS反射系数优化,以实现高效决策。仿真结果表明,与各个基准方案相比,提出的智能优化方案性能均有所提升,特别是在发射功率较小的情况下,且对于功率的变化,所提出的智能优化方案展示了良好的稳定性。
Optimization of Resource Allocation for Intelligent Reflecting Surface-enhanced Multi-UAV Assisted Semantic Communication
Unmanned Aerial Vehicles(UAV)present a cost-effective solution for wireless communication systems.This article introduces a novel Intelligent Reflecting Surface(IRS)to augment the semantic communication system among multiple UAVs.The system encompasses UAV equipped with IRS,Mobile Edge Computing(MEC)servers,and UAV featuring data collection and local semantic feature extraction functions.Optimizing signal reflection through IRS significantly enhances communication quality between drones and MEC servers.The formulated problem entails joint optimization of multiple drone trajectories,IRS reflection coefficients,and the number of semantic symbols to minimize transmission delays.To address this non-convex optimization problem,this paper introduces a Deep Reinforcement Learning(DRL)algorithm.Specifically,the Dueling Double Deep Q Network(D3QN)is employed to address discrete action space problems such as drone trajectory and semantic symbol quantity optimization.Additionally,Deep Deterministic Policy Gra-dient(DDPG)algorithm is utilized to solve continuous action space problems,such as IRS reflection coefficient optimization,enabling efficient decision-making.Simulation results demonstrate that the proposed intelligent optimization scheme outperforms various bench-mark schemes,particularly in scenarios with low transmission power.Furthermore,the intelligent optimization scheme proposed in this paper exhibits robust stability in response to power changes.

UAV networkIRSsemantic communicationresource allocation

王浩博、吴伟、周福辉、胡冰、田峰

展开 >

南京邮电大学 通信与信息工程学院,江苏 南京 210003

南京航空航天大学 电子信息工程学院,江苏 南京 211106

南京邮电大学 现代邮政学院,江苏 南京 210003

无人机网络 智能反射面 语义通信 资源分配

国家重点研发计划国家自然科学基金广东省促进经济发展专项国家自然科学基金青年基金

2020YFB180760262271267粤自然资合[2023]24号62302237

2024

无线电通信技术
中国电子科技集团公司第五十四研究所

无线电通信技术

北大核心
影响因子:0.745
ISSN:1003-3114
年,卷(期):2024.50(2)
  • 18