首页|基于最优邻域搜索粒子群的低轨卫星通信任务规划方法

基于最优邻域搜索粒子群的低轨卫星通信任务规划方法

扫码查看
针对低轨卫星通信中的任务规划问题,提出了 一种基于最优邻域搜索粒子群优化(Particle Swarm Optimization,PSO)群算法的任务规划方法。引入最优近邻搜索,通过最优粒子间的差分值来促进局部搜索,设计了惯性权值、社会和自我学习因子的优化方式,最终能够高效求解低轨卫星通信星座中多转发器与多任务的组合优化问题,用以应对低轨卫星过境时间限制和链路切换导致的时间段离散问题,并使得算法前期具有更强探索全局最优和后期快速收敛的能力。实验验证结果表明,该方法能够在低轨卫星中的约束条件下,有效提高卫星平均资源占用率(Average Occupancy Percentage,AOP)的同时减少算法收敛的迭代次数,显著降低运行时间开销。
Method for Low Earth Orbit Satellite Communication Task Planning Based on Optimal Neighborhood Search PSO Algorithm
Aiming at the mission planning problem in low earth orbit satellite communication,a mission planning method based on the optimal neighborhood search Particle Swarm Optimization(PSO)algorithm is proposed.First,the optimal nearest neighbor search is introduced to promote local search through the difference value between optimal particles.The second step is to design the optimization method of inertia weight,social and self-learning factors.Ultimately,this method can effectively solve the combined optimization problem of multi-transponders and multi-tasks in low earth orbit satellite communication constellations,and cope with the discrete time period problem caused by low earth orbit satellite transit time constraints and link switching.And this algorithm has a strong ability to explore the global optimum in the early stage and quickly converge in the later stage.Experimental verification results show that the method pro-posed can effectively increase the Average Occupancy Percentage(AOP)of satellites under multi-constraint conditions of low-orbit sat-ellites,effectively reduce the number of iterations of algorithm convergence,and significantly reduce the running time overhead.

task planningPSOheuristic algorithmoptimal neighborhood searchlow earth orbit satellite communication

单长胜、范丹丹、林宇生、耿纪昭、孙文宇

展开 >

中国人民解放军32039部队,北京 102300

中国电子科技集团公司第五十四研究所,河北石家庄 050081

任务规划 粒子群优化 启发式算法 最优邻域搜索 低轨卫星通信

2024

无线电通信技术
中国电子科技集团公司第五十四研究所

无线电通信技术

北大核心
影响因子:0.745
ISSN:1003-3114
年,卷(期):2024.50(3)
  • 24