首页|A*蚁群融合的复合启发式路径规划算法

A*蚁群融合的复合启发式路径规划算法

扫码查看
为提高无人机执行巡飞探查任务的效率,规划出一条最优的飞行路径,针对传统蚁群算法应用于路径规划时存在搜索效率低、迭代次数多、路径拐点多的问题,提出一种A*蚁群融合的复合启发式路径规划算法。利用A*算法预搜索差异化初始信息素,减少蚁群算法前期搜索盲目性,提高搜索效率。构造一种复合启发函数,引入A*算法启发思想改进蚁群原本的启发式信息,设计路径平滑启发函数减少路径拐点。改进信息素更新规则,引入路径综合评分指标,使得每次迭代保留综合性能评分最优的路径。仿真实验表明,改进算法提高了搜索效率,一定程度上解决了拐点过多的问题,综合性能指标优于基本算法与对比文献算法,具有一定工程实践与理论研究意义。
A*and Ant Colony Fusional Composite Heuristic Path Planning Algorithm
In order to improve the efficiency of UAV patrol exploration task and plan an optimal flight path,a compound heuristic A*ant colony path planning algorithm is proposed to solve the problems of low search efficiency,too much iterations and many path in-flection points when ant colony algorithm is applied to UAV path planning.Firstly,A*algorithm is used to pre-search the differentiated initial pheromone to reduce the blindness of the ant colony algorithm.Then a composite heuristic function is constructed,an A*heuristic idea is introduced to construct the ant colony path length heuristic function,and the path smoothness evaluation function is designed.Fi-nally,the pheromone update rule is improved,and the path comprehensive score index is introduced,so that the path with the best com-prehensive performance score is retained as much as possible in each iteration.Simulation experiments show that the improved algorithm solves the problem of too many inflection points to a certain extent,improves search efficiency,and the comprehensive performance index is better than the basic algorithm compared with the literature algorithm,which has certain engineering significance.

A*algorithmant colony algorithmpath planningheuristic

陈焱、陆杰、李大鹏

展开 >

南京邮电大学通信与信息工程学院,江苏南京 210003

中国电科新一代移动通信创新中心,江苏南京 210019

A*算法 蚁群算法 路径规划 启发式

国家重点研发计划

2021ZD0140405

2024

无线电通信技术
中国电子科技集团公司第五十四研究所

无线电通信技术

北大核心
影响因子:0.745
ISSN:1003-3114
年,卷(期):2024.50(3)
  • 20