无线电通信技术2024,Vol.50Issue(4) :696-703.DOI:10.3969/j.issn.1003-3114.2024.04.011

基于自适应聚合时间的半同步联邦资源优化算法

Semi-synchronous Federated Resource Optimization Algorithm Based on Adaptive Aggregation Time

李铁 庄琲 林尚静 韩志博
无线电通信技术2024,Vol.50Issue(4) :696-703.DOI:10.3969/j.issn.1003-3114.2024.04.011

基于自适应聚合时间的半同步联邦资源优化算法

Semi-synchronous Federated Resource Optimization Algorithm Based on Adaptive Aggregation Time

李铁 1庄琲 1林尚静 1韩志博1
扫码查看

作者信息

  • 1. 北京邮电大学电子工程学院安全生产智能监控北京市重点实验室,北京 100876
  • 折叠

摘要

联邦学习是一种高效的分布式机器学习方法,其中多个设备使用自己的本地数据进行分布式模型训练,不需要交换本地数据,仅通过交换模型参数来构建共享的全局模型,从而保护用户的隐私.为了平衡模型性能和通信延迟,在半同步联邦学习场景下,使用权重参数建立了一个最小化模型性能和聚合时间的加权和的优化问题.优化变量包括进行全局模型更新的聚合时间、用户调度以及参与上传的用户的带宽和发射功率,通过使用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)将所提混合整数非线性规划(Mixed Integer Non-Linear Programming,MINLP)问题分解为两个子问题进行求解.仿真实验证明,所提算法能够以牺牲4%模型性能为代价,降低73%的聚合时间,显著提高了通信效率.

Abstract

Federated learning is an efficient distributed machine learning method,in which multiple devices use their own local data for distributed model training.There is no need to exchange local data.Instead,it only need to build a shared global model by exchan-ging model parameters,thereby protecting the user's privacy.In order to balance model performance and communication delay,in the semi-synchronous federated learning scenario,an optimization problem that minimizes the weighted sum of model performance and ag-gregation time is established using weight parameters.Optimization variables include the aggregation time for global model updates,user scheduling,and the bandwidth and transmit power of participating upload users.The proposed Mixed Integer Non-Linear Programming(M1NLP)problem is decomposed into two sub-problems to solve using Alternating Direction Method of Multipliers(ADMM).Simula-tion experiments prove that the proposed algorithm can reduce the aggregation time by 73%at the expense of 4%model performance,and significantly improve communication efficiency.

关键词

物联网/半同步联邦学习/用户调度/资源优化

Key words

internet of things/semi-synchronous federated learning/user scheduling/resource allocation

引用本文复制引用

出版年

2024
无线电通信技术
中国电子科技集团公司第五十四研究所

无线电通信技术

北大核心
影响因子:0.745
ISSN:1003-3114
段落导航相关论文