首页|基于颗粒化梯度扰动的智能网联隐私保护方法研究

基于颗粒化梯度扰动的智能网联隐私保护方法研究

扫码查看
在智能网联交通系统中,联邦学习通过下发模型到智能网联路侧设施,在中心服务器的调度下完成分布式本地训练与全局聚合,提高交通数据隐私保护,但仍存在数据隐私泄露风险.攻击者根据路侧设施共享的模型参数,发起梯度泄露攻击,可复原路侧设施的训练交通数据.基于差分隐私理论与信息熵理论,针对梯度泄露攻击,设计颗粒化梯度扰动防御方法,挑选Fisher信息值低的神经元,对梯度注入精心设计的拉普拉斯噪声,干扰攻击者基于上传梯度的数据复原.通过理论分析得出该防御方法满足差分隐私保护与训练收敛.实验结果表明,颗粒化梯度扰动方法有效防御梯度泄露攻击,同时保证训练精确度在90%以上,优于整体梯度扰动方法与随机梯度扰动方法.
Research on Privacy Protection Method of Intelligent Networking Based on Granular Gradient Perturbation
In intelligent networked transportation systems,federated learning can improve privacy protection of transportation data by enabling roadside infrastructures to execute distributed local training and global aggregation under the scheduling of an edge server,but there still exists privacy leakage risk.The attackers can use gradient leakage attack to recover the training transportation data of the roadside infrastructures given their shared model parameters.This paper proposes a granular gradient perturbation method based on dif-ferential privacy theory and information theory to defend the gradient leakage attack.The defense method selects the neurons with low Fisher information value and adds designed Laplace noise into their corresponding gradients to perturb the data reconstruction by the at-tackers.The theoretical analysis is provided to validate that the proposed defense method satisfies the differential privacy protection and training convergence.Experimental results demonstrate that the proposed defense method effectively defends against the gradient leakage attack,while the training accuracy of federated learning keeps above 90%,which is better than the overall gradient perturbation method and the random gradient perturbation method.

federated learningintelligent networkeddifferential privacyinformation entropy theory

刘强、段晓沛、胡详文、朱强、曾子乔

展开 >

广州市南沙区房地产和住房保障服务中心,广东广州 511400

天津市政工程设计研究总院有限公司,天津 300041

华南理工大学土木与交通学院,广东广州 510641

广东工业大学自动化学院,广东广州 510006

展开 >

联邦学习 智能网联 差分隐私 信息熵

2024

无线电通信技术
中国电子科技集团公司第五十四研究所

无线电通信技术

北大核心
影响因子:0.745
ISSN:1003-3114
年,卷(期):2024.50(4)