首页|基于Tv-SECOND的自动驾驶场景下的3D目标检测

基于Tv-SECOND的自动驾驶场景下的3D目标检测

扫码查看
针对自动驾驶场景中复杂环境下的3D目标检测任务,特别是远距离和遮挡条件下,为提高模型的检测准确率,在SECOND的基础上提出了Tv-SECOND两阶段算法。该算法提出一种基于Transformer架构的提案框特征提取模块,并在传统体素特征编码基础上提出可变形的体素特征编码模块。在KITT1数据集上进行测试,结果显示,所提出的算法相比SECOND在远距离和遮挡严重的情况下分别提高了 7。49%、9。72%。同时与其他先进的两阶段方法相比,检测精度有不同程度的提升,证明了 Tv-SECOND算法的有效性。新算法能够建立特征之间的依赖关系,聚合周边广域的上下文信息,增强模型的学习推理能力,有效提升了模型在远距离和遮挡的情况下的检测性能。
3D Object Detection in Autonomous Driving Scenarios Based on Tv-SECOND
In response to the issue of 3D object detection tasks in complex environments of autonomous driving scenarios,particu-larly under long-distance and occlusion conditions,a two-stage Tv-SECOND algorithm is proposed based on SECOND to enhance detec-tion accuracy.This algorithm introduces a proposal feature extraction module with a Transformer architecture,and additionally,proposes a deformable voxel feature encoding module based on traditional voxel feature encoding.Tested on the KITTI dataset,results show that compared to SECOND,our proposed algorithm improves the detection performance by 7.49%and 9.72%respectively in long-distance and severe occlusion situations.Moreover,it exhibits varying degrees of improvement in detection accuracy compared to other advanced two-stage methods,demonstrating the effectiveness of the Tv-SECOND algorithm.This new algorithm can establish dependencies among features,aggregate wide-ranging contextual information from surrounding areas,and enhance learning and inference capabilities.It effec-tively improves the detection performance of the model in long-distance and occluded scenarios.

autonomous driving3D object detectionTransformerSECOND

魏海跃、杨奎河、毕江峰

展开 >

河北科技大学信息科学与工程学院,河北石家庄 050018

自动驾驶 3D目标检测 Transformer SECOND

2024

无线电通信技术
中国电子科技集团公司第五十四研究所

无线电通信技术

北大核心
影响因子:0.745
ISSN:1003-3114
年,卷(期):2024.50(4)