首页|基于轻量化卷积神经网络的蜂窝流量低复杂度预测方法

基于轻量化卷积神经网络的蜂窝流量低复杂度预测方法

扫码查看
随着蜂窝网络数据流量需求的高速增长,对于未来时刻蜂窝流量情况的精准预测,可以帮助改善网络资源分配、实现流量负载均衡,并部署基站节能与休眠策略.基于轻量化线性瓶颈结构,提出了一个具有多个并列分支结构的空时预测模型,分别提取近期历史数据和周期性历史数据中的空时特征.对于网格化空时数据中的空间依赖性,额外通过K-Means算法对网格高维特征进行聚类,并提取网格基站密度信息作为跨域特征输入到模型中,实现了使用低复杂度、低算力需求模型对研究范围全域流量的精准预测.
Low-complexity Cellular Traffic Prediction Algorithm Based on Lightweight Convolutional Neural Network
With the rapid growth of data traffic demand in cellular networks,accurate prediction of cellular traffic conditions at fu-ture moments can improve network resource allocation,achieve traffic load balancing,and deploy base station energy saving and sleeping strategies.Based on the lightweight linear bottleneck module,a spatiotemporal prediction model with multiple parallel branching modules is proposed to extract spatiotemporal features from recent historical data and periodic historical data,respectively.Meanwhile,for the spatial dependency in the gridded spatiotemporal data,high-dimensional grid features are additionally clustered by K-Means algo-rithm,and the grid base station density information is extracted and fed into the model as a cross-domain feature,thus realising accurate prediction of the cellular traffic in the whole area of the study range deploying a low-complexity and low-computing-power-demand model.

spatiotemporal traffic predictionlightweight modelconvolutional neural networkdeep learningcellular network

郑淞之、张兴、张妍、王兴瑜、袁国翔

展开 >

北京邮电大学信息与通信工程学院,北京 100876

中国电信股份有限公司北京分公司,北京 100032

中国人民解放军93216 部队,北京 100085

空时流量预测 轻量化模型 卷积神经网络 深度学习 蜂窝网络

2024

无线电通信技术
中国电子科技集团公司第五十四研究所

无线电通信技术

北大核心
影响因子:0.745
ISSN:1003-3114
年,卷(期):2024.50(5)