首页|基于FPGA+ARM异构平台的道路交通目标检测设计

基于FPGA+ARM异构平台的道路交通目标检测设计

扫码查看
针对当前目标检测技术在智能汽车上所需的体积小、能效比高、检测速度快、精度高等要求,提出了一种新型嵌入式道路交通目标检测设计。该方案以 YOLOv3 为基础网络模型,通过新增网络检测层和网络剪枝技术分别提升网络的检测精度和检测速度,在硬件端以深度处理单元(Deep Learning Processing Unit,DPU)为核心搭建了底层硬件平台,对网络的卷积计算进行并行加速,改进后的模型通过量化和编译后可以部署至 FPGA+ARM异构平台。经测试,在KITTI数据集上的检测精度为 85。32%,功耗为 8。2 W,检测帧率为 31。2 Hz,算力功耗比达到 58。3 GOPs/W,是RTX 2060 super型GPU的3。9 倍,Intel i7-12400 型CPU的9。3 倍。实验结果表明,该方案满足道路交通目标检测设计要求,相较常用目标检测平台GPU,所提方案的部署空间小、功耗低,更适于灵活部署在空间紧凑、能源供给受限的智能汽车中。
Design of Road Traffic Target Detection System Based on FPGA+ARM Heterogeneous Platform
In response to the requirement of small size,high energy efficiency,fast detection speed,and high accuracy for current object detection technology in intelligent vehicles,a novel embedded road traffic object detection design is proposed.This design uses YOLOv3 as the base network model and enhances detection accuracy and speed by adding new network detection layers and employing network pruning techniques.On the hardware side,a hardware platform is built around the Deep Learning Processing Unit(DPU)to parallelize the network's convolutional computations.The improved model,after quantization and compilation,can be deployed on an FPGA+ARM heterogeneous platform.Testing on the KITTI dataset shows a detection accuracy of 85.32%,power consumption of 8.2 W,detection speed of 31.2 Hz,and a computational power efficiency of 58.3 GOPs/W,which is 3.9 times that of the RTX 2060 Super GPU and 9.3 times that of the Intel i7-12400 CPU.Experimental results indicate that this design meets the requirement for road traffic object detection.Compared to commonly used object detection platforms like GPUs,the proposed solution is more suitable for flexible deployment in intelligent vehicles with limited space and energy supply due to its smaller deployment footprint and lower power con-sumption.

intelligent vehicleobject detectiondeep learningembeddedFPGA

胡胜、王逸风、易文涛、贺岚晴、宋海娜、刘聪

展开 >

湖北工业大学电气与电子工程学院,湖北武汉 430068

湖北工业大学太阳能高效利用及储能运行控制湖北省重点实验室,湖北武汉 430068

智能汽车 目标检测 深度学习 嵌入式 FPGA

国家自然科学基金

62202148

2024

无线电通信技术
中国电子科技集团公司第五十四研究所

无线电通信技术

北大核心
影响因子:0.745
ISSN:1003-3114
年,卷(期):2024.50(5)