首页|用于计算和传输的动态星间路由策略

用于计算和传输的动态星间路由策略

扫码查看
针对低地球轨道(Low Earth Orbit,LEO)卫星网络具有拓扑变化快、网络节点多和节点资源状态变化等特点,提出了一种用于计算和传输的星间路由策略。该策略使用改进的图卷积网络(Enhanced-Graph Convolutional Network,EGCN)提取卫星网络的时空特征并生成节点的隐藏状态。将其作为深度强化学习(Deep Reinforcement Learning,DRL)模型的输入,DRL智能体感知下一跳节点的关键信息,从而更好地做出决策。仿真结果表明,与以前的方法相比,提出的方法提高了网络的总吞吐量,降低了端到端传输延迟。
Dynamic Inter-satellite Routing Strategy for Computation and Transmission
Low Earth Orbit(LEO)satellite networks have the characteristics of rapid topology changes,varying network nodes and fluctuations in node resource availability.An inter-satellite routing strategy for computation and transmission is proposed,which uses the Enhanced-Graph Convolutional Network(EGCN)to extract the spatiotemporal features from the satellite network and generates the hid-den states for each network node.As input to the Deep Reinforcement Learning(DRL)model,the DRL agent senses the key informa-tion of the next-hop node to make better decisions.Simulation results show that,compared to previous methods,the proposed method not only improves the overall throughput of the network,but also reduces the end-to-end transmission delay.

inter-satellite routing strategydynamic satellite networkDRLgraph convolutional neural network

许柳飞、罗志勇

展开 >

中山大学深圳校区电子与通信工程学院,广东深圳 518107

星间路由策略 动态卫星网络 深度强化学习 图卷积神经网络

2024

无线电通信技术
中国电子科技集团公司第五十四研究所

无线电通信技术

北大核心
影响因子:0.745
ISSN:1003-3114
年,卷(期):2024.50(6)