首页|天地融合网络中基于深度强化学习的计算卸载算法研究

天地融合网络中基于深度强化学习的计算卸载算法研究

扫码查看
随着近地轨道(Low Earth Orbit,LEO)卫星网络和移动边缘计算(Mobile Edge Computing,MEC)技术的发展,通过在LEO卫星上部署MEC服务器,可以为缺乏计算资源的偏远地区提供计算卸载服务。然而,随着地面用户数量的不断增加,天地融合网络中的计算卸载场景变得越发复杂。现有研究难以应对任务复杂、到达率较高的场景,针对上述问题,在现有算法的基础上,提出了一种基于深度强化学习(Deep Reinforcement Learning,DRL)的并行计算卸载(DRL-based Parallel Computation Offloading,DPCO)算法。该算法以最小化计算卸载平均时延为优化目标进行建模,考虑了阿姆达尔定律对计算性能的影响,并对星上服务器的计算资源进行划分,以实现多任务并行处理的功能。此外,DPCO算法将模型转换为马尔可夫决策过程(Markov Decision Process,MDP),并使用A2 C(Advantage Actor-Critic)算法对其进行求解。通过仿真实验验证了DPCO算法性能,结果表明该算法有效地解决了现有算法的缺陷,可为天地融合网络中的计算卸载算法设计提供参考和帮助。
Research on DRL-based Computation Offloading Algorithm in Integrated Terrestrial-Satellite Networks
With the rapid development of the Low Earth Orbit(LEO)satellite network and Mobile Edge Computing(MEC)tech-nology,by deploying MEC servers in LEO satellites,computation offloading services can be provided for remote areas where there is a lack of terrestrial MEC servers.However,as the number of ground users increases,the complexity of integrated terrestrial-satellite net-work computation offloading scenarios has grown significantly.Existing studies have difficulties dealing with scenarios characterized by high arrival rates and complex tasks.To solve this problem,a Deep Reinforcement Learning(DRL)-based Parallel Computation Offload-ing(DPCO)algorithm is proposed.This algorithm models the computation offloading problem with the optimization objective of minimi-zing the total offloading delay.It also considers the impact of Amdahl's law on computational performance and allocates computing re-sources of satellite MEC servers to enable multi-task parallel processing.Additionally,the DPCO algorithm transforms the model into a Markov Decision Process(MDP)and solves it using the Advantage Actor-Critic(A2C)algorithm.Finally,the performance of the DP-CO algorithm is verified by simulation.Simulation results show that the algorithm effectively addresses existing methods'deficiencies and provides valuable references for designing computation offloading algorithms in integrated terrestrial-satellite networks.

computation offloadingMECintegrated terrestrial-satellite networkDRL

王从羽、罗志勇

展开 >

中山大学深圳校区电子与通信工程学院,广东深圳 518107

计算卸载 移动边缘计算 天地融合网络 深度强化学习

2024

无线电通信技术
中国电子科技集团公司第五十四研究所

无线电通信技术

北大核心
影响因子:0.745
ISSN:1003-3114
年,卷(期):2024.50(6)