首页|基于多尺度卷积和改进LSTM的航迹数据关联方法

基于多尺度卷积和改进LSTM的航迹数据关联方法

扫码查看
针对雷达数据智能航迹关联准确率较低的问题,文章提出了一种融合多尺度卷积神经网络和改进长短期记忆网络的航迹关联方法.首先,利用多尺度卷积神经网络提取多个维度的空间特征,避免固定尺寸的卷积核产生视野限制,使网络能够提取更高维度的特征.然后,将特征送入改进的长短期记忆网络捕获时间维度上的特征,改进后的单元结构充分考虑相邻时刻航迹数据的关联性,有效抑制了噪声和误差产生的影响.最后,仿真实验结果表明,该方法有效提高了航迹关联准确率.
Method of track data association based on multi-scale convolution and improved LSTM
To address the issue of low accuracy in intelligent trajectory association for radar data,this paper proposes a trajectory association method that integrates multi-scale convolution(CNN)and improved long short-term memory networks(LSTM).Firstly,multi-scale CNN is utilized to extract spatial features across multiple dimensions,avoiding the limited field of view problem caused by fixed-size convolution kernels and enabling the network to capture higher-dimensional features.Subsequently,the features are fed into the improved LSTM network to capture temporal features,and the enhanced unit structure takes into account the correlation of adjacent moments in trajectory data,effectively suppressing the impact of noise and errors.Finally,the results from simulation experiments demonstrate that this method effectively improves trajectory association accuracy.

convolutional neural networklong short-term memory neural networktrack association

贾燎原、曹伟

展开 >

中国船舶重工集团有限公司第724 研究所,江苏 南京 210000

卷积神经网络 长短期记忆神经网络 航迹关联

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(2)
  • 7