无线互联科技2024,Vol.21Issue(2) :119-124.

基于深度学习的船舶数据向量模型研究

Research on ship data vector model based on deep learning

顾晴 周军 潘纯杰 羌杨洋
无线互联科技2024,Vol.21Issue(2) :119-124.

基于深度学习的船舶数据向量模型研究

Research on ship data vector model based on deep learning

顾晴 1周军 1潘纯杰 1羌杨洋1
扫码查看

作者信息

  • 1. 江苏航运职业技术学院 智能制造与信息学院,江苏 南通 226001
  • 折叠

摘要

近年来,航运信息化建设进程加速发展,然而由于各单位在船舶信息管理上的不统一,导致收集到的数据存在大量的相似重复数据.如果直接使用这部分数据进行数据分析,会对最终结果造成严重影响.为了解决对重复数据的检测问题,文章基于深度学习,融合FastText向量模型、BERT模型以及LDA模型,搭建多语义融合模型,对船舶数据进行向量构建,使得生成的向量包含信息更全面,提升重复检测准确率,提高船舶数据清洗效率.

Abstract

In recent years,the process of shipping information construction has accelerated.However,due to the inconsistency in ship management information among various units,there is a large number of similar and duplicate data collected.If these problem data are not processed and directly entered into the next step of data analysis,it will have a serious impact on the final result.In order to solve the problem of only considering unilateral semantics in current methods,based on deep learning and from a multi-semantic perspective,a multi-semantic fusion model is constructed for ship data vector construction by integrating FastText vector model,BERT model,and LDA model.This makes the final classified vector contain more comprehensive information,improves the accuracy of duplicate detection,and improves the efficiency of ship data cleaning.

关键词

船舶数据/多语义融合/深度学习

Key words

ship data/multi semantic fusion/deep learning

引用本文复制引用

基金项目

2022年南通市科技局计划项目(JC12022054)

出版年

2024
无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
参考文献量6
段落导航相关论文