无线互联科技2024,Vol.21Issue(5) :122-128.

基于K近邻算法的主机异常行为检测

Host abnormal behavior detection based on K nearest neighbor algorithm

黄智睿 谢显杰 杨晓丹
无线互联科技2024,Vol.21Issue(5) :122-128.

基于K近邻算法的主机异常行为检测

Host abnormal behavior detection based on K nearest neighbor algorithm

黄智睿 1谢显杰 1杨晓丹2
扫码查看

作者信息

  • 1. 昆明冶金高等专科学校,云南 昆明 650033
  • 2. 云南师范大学,云南 昆明 650092
  • 折叠

摘要

基于主机异常的入侵检测方法可以识别用户操作是否存在异常,从而提醒用户进行处理以保证系统安全.为了能够快速高效地识别用户操作异常,文章提出了基于K近邻算法的主机异常检测方法.该方法首先在特征提取过程中使用自然语言处理的算法来提取特征向量,然后采用主成分分析算法进行降维处理,接着使用K近邻算法学习主机的正常操作和异常操作的相关特征,建立检测模型,最后使用学习后建立的模型来判断主机是否存在异常操作.该方法采用澳大利亚国防学院的ADFA-LD数据集进行实验,验证了所提出方法性能良好.

Abstract

The intrusion detection method based on host anomaly can identify whether there is an anomaly in the user's operation,thus reminding the user to deal with it to ensure the security of the system.In order to identify the anomalies of user operations quickly and efficiently,a host anomaly detection method based on K-nearest neighbor algorithm is proposed in this paper.In this method,the natural language processing algorithm is used to extract the feature vector in the feature extraction process,and then the principal component analysis algorithm is used to reduce the dimensionality.Then the K nearest neighbor algorithm is used to learn the relevant features of the normal operation and abnormal operation of the host to establish a detection model.Finally,the model established after learning is used to determine whether the host has abnormal operations.In this paper,the ADFA-LD data set of Australian Defense College is used to verify the performance of the proposed method.

关键词

网络空间安全/机器学习/主机异常检测/K近邻算法/自然语言处理

Key words

cyberspace security/machine learning/host abnormal behavior detection/K nearest neighbor algorithm/natural language processing

引用本文复制引用

基金项目

昆明冶金高等专科学校科研基金(2023xjy03)

出版年

2024
无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
参考文献量15
段落导航相关论文