首页|基于随机森林算法的工业大数据故障分析

基于随机森林算法的工业大数据故障分析

扫码查看
随着信息技术的发展,工业互联网技术已经被应用到工业大数据生产的各个环节,基于大数据技术的数据采集、数据存储、数据处理、数据分析和数据可视化等模块的技术应用也越来越走向成熟和高端.但是数据异常在生产过程中带来的风险始终是企业不可忽视的问题.文章对工业大数据的实时数据进行特征提取、数据处理,采用随机森林算法对工业大数据进行训练、构建模型,将实时数据输入模型中,动态更新参数以提高模型的分类精度,输出分类结果,最终在工业生产过程中对工业大数据进行故障预警并进行故障分析.
Fault analysis of industrial big data based on random forest algorithm
With the development of information technology,industrial Internet technology has been applied to all aspects of industrial big data production.The technology applications of data acquisition,data storage,data processing,data analysis and data visualization based on big data technology are becoming more and more mature and high-end.However,the risk of data anomalies in the production process is always a problem that enterprises cannot ignore.It is provided in this paper for performing feature extraction and dats processing to real-time data of industrial big data.The random forest algorithm is adopted to train industrial big data and build the model.The real-time data are inputted into the model and the parameters are updated dynamically to improve the classification accuracy of the model,from which the classification results are output.Finally,the fault warning and fault analysis of industrial big data are provided during the industrial production process.

industrial big datarandom forestfault warning

张艳敏、董坤行

展开 >

河北软件职业技术学院,河北 保定 071000

工业大数据 随机森林 故障预警

2023年保定市科技计划项目

2311ZG018

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(6)
  • 5