首页|SDN中基于信息熵与机器学习的DDoS攻击检测模型构建

SDN中基于信息熵与机器学习的DDoS攻击检测模型构建

扫码查看
软件定义网络(Software-Defined Network,SDN)的集中控制特征使得网络管理更加灵活高效,但同时也成为网络攻击的主要对象,其中分布式拒绝服务攻击DDoS是SDN面临的主要威胁之一。结合统计学习和机器学习这 2 种SDN中常用的检测方法,文章分析了基于信息熵与机器学习算法的DDoS攻击检测模型,并利用信息熵的阈值判断检测出疑似异常流量,再用决策树算法构建的检测模型检测出DDoS攻击。分类检测模型构建了6 个特征属性,并通过计算信息增益值筛选出最优特征子集。通过与其他分类算法模型的比较,该模型提高了检测准确性,减少了检测时间。
Construction of DDoS attack detection model based on information entropy and machine learning in SDN
The centralized control features of software-defined network(SDN)make network management more flexible and efficient,but it also becomes the main object of network attacks,among which distributed denial of service attack DDoS is one of the main threats that SDN faces.Combining the two commonly used detection methods of statistical learning and machine learning in SDN networks,the DDoS attack detection model is analyzed based on information entropy and machine learning algorithm.The threshold value of information entropy is used to judge and detect suspected abnormal traffic,and then the detection model is used to construct by decision tree algorithm to detect DDoS attacks.The six feature attributes are constructed in the classification detection model.The optimal feature subset is selected by calculating the information gain value.Compared with other classification algorithms,this model improves the detection accuracy and reduces the detection time.

software-defined networkdistributed denial of service attackinformation entropyattack detection

鲁顶芝

展开 >

滁州职业技术学院,安徽 滁州 239000

软件定义网络 分布式拒绝服务攻击 信息熵 攻击检测

2022年校级科研重点项目2022年校级科研重点项目2021年校级科研一般项目

SKZ-2022-09SZKZ-2022-05YJY-2021-06

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(6)
  • 6