首页|网络故障预测算法的研究与应用

网络故障预测算法的研究与应用

扫码查看
文章旨在研究不同的网络故障预测技术,利用数学方法构建模型进行瞬态分析.文章使用标准化均方根误差评估这些技术在预测故障间隔时间方面的性能.研究采用了多种模型,进行连续时间马尔可夫链分析,以提供网络可靠性的额外洞察.结果显示,深度神经网络和自编码器在预测性能方面表现出显著优势,而线性模型效果较差,说明网络故障数据更复杂,不适合线性建模.网络在次优状态下的时间占比较高,需要更主动的方法来减少故障次数.研究利用基于连续时间马尔可夫链的网络故障预测模型,通过实验证明了其有效性.
Research and application of network fault prediction algorithm
This study aims to investigate different network fault prediction techniques and use mathematical methods to construct models for transient analysis.We evaluate the performance of these techniques in predicting fault interval time using normalized root mean square error.The study employed multiple models and conducted continuous time Markov chain analysis to provide additional insights into network reliability.The results show that deep neural networks and autoencoders exhibit significant advantages in predictive performance,while linear models have poor performance,indicating that network fault data is more complex and not suitable for linear modeling.The time consumption of the network in suboptimal state is relatively high,and more proactive methods are needed to reduce the number of failures.A network fault prediction model based on continuous time Markov chains was utilized,and its effectiveness was demonstrated through experiments.

network faultprediction algorithmresearch and application

徐建伟

展开 >

中海油信息科技有限公司湛江分公司,广东 湛江 524000

网络故障 预测算法 研究与应用

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(7)
  • 10