首页|基于物联网和深度学习的智能城市交通管理系统

基于物联网和深度学习的智能城市交通管理系统

扫码查看
随着城市化的快速发展,城市交通问题日益严峻.准确预测交通流量是缓解交通拥堵、提高交通管理效率的关键.文章提出了一种基于LSTM的城市交通流量预测方法.该方法首先对交通数据进行预处理,包括数据清洗、归一化等;其次,利用LSTM模型学习交通数据的时空依赖关系;最后,利用训练好的模型预测未来的交通流状态.文章在METR-LA数据集上进行了实验,实验结果证明了方法的有效性.该方法可以应用于实际交通管理系统,为交通管理部门提供决策支持,如交通信号灯控制、交通路线规划等.
Intelligent urban traffic management system based on Internet of Things and deep learning
With the rapid development of urbanization,urban traffic problems are becoming increasingly severe.Accurate prediction of traffic flow is key to easing traffic congestion and improving traffic management efficiency.This paper proposes an urban traffic flow prediction method based on LSTM.This method first preprocesses traffic data,including data cleaning,normalization,etc.Then,the LSTM model is used to learn the spatiotemporal dependence of traffic data.Finally,the trained model is used to predict future traffic flow status.In order to verify the effectiveness of the method,experiments were conducted on the METR-LA data set,and the experimental results demonstrated the effectiveness of the method.This method can be applied in actual traffic management systems to provide decision support for traffic management departments,such as traffic light control,traffic route planning,etc.

traffic flow predictionLSTMtime series predictionsmart city

孙腊腊

展开 >

郑州城建职业学院,河南 郑州 450000

交通流量预测 LSTM 时间序列预测 智能城市

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(7)
  • 10