首页|基于改进TransU-Net的乳腺肿瘤分割算法研究

基于改进TransU-Net的乳腺肿瘤分割算法研究

扫码查看
针对超声乳腺肿瘤图像中存在的高散斑噪声较多、肿瘤边缘模糊以及形状复杂多样等问题,文章在TransU-Net的基础上进行改进,提出了基于TransU-Net的多路径特征融合网络(MFF-Net).文章分析了MFF-Net的整体结构、多路径特征融合提取模块以及深监督机制,通过实验验证了MSF-Net在处理边缘模糊和形状复杂多样的乳腺超声图像方面的有效性.结果显示,MSF-Net在多个评价指标上优于现有的主流方法.
Research on breast tumor segmentation algorithm based on improved TransU-Net
Aiming at the problems of high scattering noise,blurred tumor edges and complex and diverse shapes in ultrasound breast tumor images,this paper proposes a TransU-Net-based multipath feature fusion network(MFF-Net)by improving on the basis of TransU-Net.In this paper,we analyze the overall structure of MFF-Net,the multipath feature fusion extraction module and the deep supervision mechanism,and experimentally verified the effectiveness of MSF-Net in processing breast ultrasound images with blurred edges and complex and diverse shapes.The results show that MSF-Net outperforms existing mainstream methods in several evaluation indexes.

breast ultrasound image segmentationdeep learningmultipath fusiondeep supervision

朱盛滔、贺泽民、陈超峰

展开 >

西京学院,陕西 西安 710123

乳腺超声图像分割 深度学习 多路径融合 深监督

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(9)