首页|基于嵌入式机器学习的智能家居安全预警系统设计

基于嵌入式机器学习的智能家居安全预警系统设计

扫码查看
为满足与日俱增的智能家居安全管理需求,文章设计并实现了一套智能家居安全预警系统,包括监测终端节点和Web客户端软件.监测终端节点在开源硬件Arduino Nano 33 BLE上部署改进的卷积神经网络模型,通过采集家居环境声音判断是否有异常事件发生.Web客户端软件实时显示异常事件,及时向用户发送预警邮件.实验结果表明,该家居安全预警系统能够有效监测家居环境安全,满足用户对家居安全保障的现实需求.
Design of an intelligent home security system based on embedded machine learning
An intelligent home security system is designed to meet the growing needs for smart home security management,including monitoring terminals and Web client software.The monitoring terminals deploy an improved convolutional neural network model on the open-source hardware Arduino Nano 33 BLE,collecting home environment sounds to determine if any abnormal events occur.The Web client software displays the status of the home environment sound in real-time and sends email alerts to users promptly when abnormal events occur.Experimental results show that the home warning system can effectively detect the abnormal events in home environment,meeting the urgent needs of home environment security.

embedded machine learningenvironmental sound detectionbluetooth communicationArduino

张晓恒、梁明海

展开 >

南京邮电大学,江苏 南京 210003

嵌入式机器学习 环境声检测 蓝牙通信 Arduino

江苏省创新创业训练计划

202310293108Y

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(9)