首页|基于DeepLabv3+算法的城市街景语义分割算法研究

基于DeepLabv3+算法的城市街景语义分割算法研究

扫码查看
在自动驾驶领域,城市街道场景的语义分割对于提升系统的安全性和效率至关重要.针对传统语义分割模型参数过多、泛化性能较差以及分割效果有限等问题,文章提出了一种基于改进DeepLabv3+的解决方案.此改进模型融合了轻量级MobileNetv2 主干网络和SE注意力机制,优化了空洞金字塔池化(Atrous Spatial Pyramid Pooling,ASPP)模块,将其从并行结构改进成串行结构,采用深度可分离卷积结构.在 Cityscapes 数据集上,文章的方法取得了 75.90%的平均交并比(Mean Intersection over Union,MIoU),显著提升了分割精度与计算效率.
Research on urban street view semantic segmentation algorithm based on DeepLabv3+algorithm
In the field of autonomous driving,semantic segmentation of urban street scenes is crucial for improving the safety and efficiency of the system.Aiming at the problems of too many parameters,insufficient portability and limited segmentation effect of traditional semantic segmentation models,this paper proposes a solution based on improved DeepLabv3+.This improved model incorporates a lightweight MobileNetv2 backbone network and the SE attention mechanism,and optimizes the Atrous spatial pyramid pooling(ASPP)module from a parallel to a serial structure with a depth-separable convolutional structure.On the Cityscapes dataset,the method in this paper achieves 75.90%MIoU,which significantly improves the segmentation accuracy and computational efficiency.

deep learningsemantic segmentationASPP

陈文艺、苗宗成

展开 >

西京学院 电子信息学院,陕西 西安 710123

深度学习 语义分割 ASPP

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(9)