首页|一种基于集成学习和高斯过程的光伏发电量预测混合算法

一种基于集成学习和高斯过程的光伏发电量预测混合算法

扫码查看
集成算法被广泛应用于光伏发电量预测等工业场景.当没有足够的数据和工业知识储备时,该算法只能提供点预测,不能提供区间预测,降低了模型预测精度.为了解决该问题,文章提出了一种基于集成学习和高斯过程的光伏发电量预测算法.该算法利用集成学习进行光伏发电量的点预测,由多种算法组合而成,具有高精度特性.同时,文章所提的高斯过程算法将集成学习算法预测值作为输入、光伏发电量作为目标值,进行模型训练和迭代,高斯过程算法对模型进行区间预测,提高了模型的预测精度.实际的光伏场站案例验证了文章所提方法的有效性.
PV output prediction based on hybrid method of ensemble learning and Gaussian process
Ensemble learning is widely used to time-series industrial application,such as photovoltaic(PV)output forecasting,but it suffers from low fitting accuracy and point prediction only without enough training dataset and industry knowledge.To solve this problem,a hybrid method based on ensemble learning and Gaussian process to predict PV output is proposed in this paper.Regarding with the point prediction of ensemble learning of several algorithms,the Gaussian process algorithm is utilized to provide confidence intervals,which has better generalization in prediction.By actual case from PV platform,it illustrates the application of the proposed method.

ensemble learningGaussian processPV output prediction

杨盛祥

展开 >

宁波北仑第三集装箱码头有限公司,浙江 宁波 315800

集成学习 高斯过程 光伏发电量预测

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(10)