首页|基于深度学习的个性化学习推荐机制研究

基于深度学习的个性化学习推荐机制研究

扫码查看
随着教育信息化、个性化和智能化的发展,让机器读懂学生挖掘其背后隐性特征,实现自适应学习和个性化发展是目前研究面临的重要问题。基于此,文章提出了一种基于深度学习的自适应个性化学习推荐模型。首先,所构建的学习者模型通过分析学生的显性和隐性特征,揭示其深层次的语义关联;其次,设计综合性的教育知识图谱,旨在通过语义表示法精确地描述和组织教育领域的知识结构;最后,通过融合知识图谱与卷积神经网络技术,开发了一种自适应个性化学习推荐机制。该算法能够根据学生的个人特点和学习需求,进行规则和语义层面的智能匹配,实现个性化的学习资源推荐。
Research on personalized learning recommendation mechanism based on deep learning
With the development of informatization,personalization and intelligence in education,it is an important issue for research to let machines read and understand students to explore the hidden features behind them to achieve adaptive learning and personalized development.This paper proposes an adaptive personalized learning recommendation model based on deep learning.Firstly,a learner model is constructed to reveal the deep semantic associations of students by analyzing their explicit and implicit features.Secondly,a comprehensive educational knowledge graph is designed,aiming to accurately describe and organize the knowledge structure of the educational domain through semantic representation.Finally,by fusing the knowledge graph with convolutional neural network technology,an adaptive personalized learning recommendation mechanism is developed.An adaptive personalized learning recommendation mechanism is developed,which is an algorithm capable of intelligently matching at the rule and semantic levels according to students'personal characteristics and learning needs to achieve personalized learning resource recommendation.

online learningknowledge graphpersonalized learningrecommender systems

时俊雅、王文龙

展开 >

武汉东湖学院 计算机科学学院,湖北 武汉 430212

中国人民解放军海军工程大学基础部,湖北 武汉 430033

在线学习 知识图谱 个性化学习 推荐系统

武汉东湖学院青年基金项目

2022dhzk004

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(12)
  • 4