首页|基于深度学习的学生课堂行为分析系统设计

基于深度学习的学生课堂行为分析系统设计

扫码查看
文章针对传统课堂行为分析方法的弊端,设计基于深度学习的学生课堂行为分析系统.利用姿态估计方法和目标检测算法,对视频数据进行处理,实现对人体关键点的精准识别和行为分类.同时,结合人体关键点信息,能够判断学生的上课状态,便于教师能实时监测学生的行为,从而调整教学策略,提高教学质量.对该系统进行性能测试,经过多组实验对比验证,结果表明系统在分析学生课堂行为上有较高的准确性.
Design of a student classroom behavior analysis system based on deep learning
Aiming at the disadvantages of the traditional classroom behavior analysis method,this paper designs a student classroom behavior analysis system based on deep learning.The pose estimation method and the object detection algorithm are used to process the video data to realize the accurate identification and behavior classification of the key points of the human body.At the same time,combined with the key point information of human body,it can judge the state of students in class,so that teachers can monitor students'behavior in real time,so as to adjust the teaching strategy and improve the teaching quality.Finally,the performance of the system is tested and verified by multiple groups of experiments,and the results show that the system has a high accuracy in analyzing students'classroom behavior.

deep learningkey points of human bodysystem design

高荣贵

展开 >

内蒙古电子信息职业技术学院,内蒙古 呼和浩特 010070

深度学习 人体关键点 系统设计

2021年度内蒙古自治区高等学校科学研究项目

NJZY21303

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(13)
  • 3