无线互联科技2024,Vol.21Issue(17) :31-33,37.

基于深度学习的头盔佩戴检测方法研究

Research on helmet-wearing detection methods based on deep learning

吴卫宏 高莹 胡聪聪 张艳敏
无线互联科技2024,Vol.21Issue(17) :31-33,37.

基于深度学习的头盔佩戴检测方法研究

Research on helmet-wearing detection methods based on deep learning

吴卫宏 1高莹 2胡聪聪 3张艳敏3
扫码查看

作者信息

  • 1. 河北软件职业技术学院,河北 保定 071000;河北省智能互联装备与多模态大数据应用技术研发中心,河北 保定 071000
  • 2. 廊坊市第四职业中学,河北 廊坊 065000
  • 3. 河北软件职业技术学院,河北 保定 071000
  • 折叠

摘要

文章综述了当前头盔佩戴检测技术的发展现状与挑战,重点探讨了基于深度学习方法尤其是YOLO系列算法在头盔佩戴识别领域的应用潜力.文章将YOLOv8 算法应用于头盔佩戴检测领域,此方法克服了传统监控手段的局限性,实现了高效率、高准确率的自动检测,对于推动"一盔一带"安全守护行动的实施和提升公共安全管理水平具有重要价值.

Abstract

This paper provides an overview of the current state and challenges in helmet-wearing detection technology,with a particular focus on the application potential of deep learning methodologies,notably the YOLO(You Only Look Once)series of algorithms,in the realm of helmet recognition.By implementing the YOLOv8 algorithm for helmet-wearing detection,this approach not only overcomes the limitations of conventional surveillance methods but also achieves highly efficient and accurate automated detection.It thereby significantly contributes to the implementation of the"One Helmet,One Belt"safety campaign and enhances public safety management capabilities.

关键词

深度学习/头盔检测/YOLOv8算法

Key words

deep learning/helmet detection/YOLOv8 algorithm

引用本文复制引用

基金项目

2023年保定市科技计划自筹经费项目(2311ZG017)

出版年

2024
无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
段落导航相关论文