无线互联科技2024,Vol.21Issue(18) :116-118.

基于用户行为特征的网络教学云平台资源个性化推荐方法

Personalized recommendation method of cloud platform resources for network teaching based on user behavior characteristics

赵莉苹
无线互联科技2024,Vol.21Issue(18) :116-118.

基于用户行为特征的网络教学云平台资源个性化推荐方法

Personalized recommendation method of cloud platform resources for network teaching based on user behavior characteristics

赵莉苹1
扫码查看

作者信息

  • 1. 郑州科技学院 信息工程学院,河南 郑州 450064
  • 折叠

摘要

针对网络教学云平台的数据量大导致推荐的相关度低的问题,文章提出基于用户行为特征的网络教学云平台资源个性化推荐方法.该方法通过采集历史数据,筛选关键特征,结合K-中心聚类算法挖掘用户行为特征,建立与资源特征关联规则,结合偏好因子,为用户生成资源个性化推荐列表.实验测试结果表明,该方法推荐相关度高,满足平台实际应用需求.

Abstract

The problem of low relevance of recommendations due to the large amount of data on online teaching cloud platforms.This article proposes a personalized recommendation method for online teaching cloud platform resources based on user behavior characteristics.By collecting historical data to filter key features,combining K-center clustering algorithm to mine user behavior characteristics,establishing association rules with resource features,and combining preference factors,a personalized resource recommendation list is generated for users.Experimental testing shows that this method has high recommendation relevance and meets the practical application needs of the platform.

关键词

资源推荐/个性化推荐/网络教学云平台/用户行为特征

Key words

resource recommendation/personalized recommendation/network teaching cloud platform/user behavior characteristics

引用本文复制引用

基金项目

校级教改项目(2024JGZD12)

出版年

2024
无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
段落导航相关论文