首页|基于YOLOv5的水果识别及成熟度检测系统

基于YOLOv5的水果识别及成熟度检测系统

扫码查看
在我国,水果已经成为人们生活中不可缺少的食物之一,水果检测和成熟度分析是农业生产和食品加工领域的重要研究方向.传统方法依赖人工操作,费时费力且易出错.而基于深度学习的自动化方法能提高准确率,降低成本,具有广阔的应用前景.因此,文章研究并设计了基于深度学习的水果检测及成熟度分析系统,主要基于PyTorch深度学习框架搭建YOLOv5 算法对草莓、苹果和香蕉的成熟果实和未成熟果实进行检测识别.该系统能够极大地提高检测效率和精度,具有一定的现实意义与实用价值.
Fruit identification and ripeness detection system based on YOLOv5
In China,fruits have become one of the indispensable foods in people's life,and fruit detection and ripening analysis is an important research direction in the field of agricultural production and food processing.Traditional methods rely on manual operation,which is time-consuming and error-prone.The automated method based on deep learning can improve the accuracy and reduce the cost,which has the prospect of wide application.Therefore,this paper researches and designs a deep learning-based fruit detection and ripeness analysis system,which is mainly based on PyTorch deep learning framework to build YOLOv5 algorithm to detect and identify ripe and unripe fruits of strawberries,apples,and bananas,which can greatly improve the detection efficiency and accuracy,and it has a certain practical significance and practical value.

fruit detectionripeness analysisYOLOv5deep learning

郑凯文、张骋烯、陈爱琴

展开 >

南京理工大学紫金学院,江苏 南京 210023

水果检测 成熟度分析 YOLOv5 深度学习

江苏省大学生创新创业训练计划项目

202213654045T

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(19)