无线互联科技2024,Vol.21Issue(19) :70-74,82.

基于YOLOv5的水果识别及成熟度检测系统

Fruit identification and ripeness detection system based on YOLOv5

郑凯文 张骋烯 陈爱琴
无线互联科技2024,Vol.21Issue(19) :70-74,82.

基于YOLOv5的水果识别及成熟度检测系统

Fruit identification and ripeness detection system based on YOLOv5

郑凯文 1张骋烯 1陈爱琴1
扫码查看

作者信息

  • 1. 南京理工大学紫金学院,江苏 南京 210023
  • 折叠

摘要

在我国,水果已经成为人们生活中不可缺少的食物之一,水果检测和成熟度分析是农业生产和食品加工领域的重要研究方向.传统方法依赖人工操作,费时费力且易出错.而基于深度学习的自动化方法能提高准确率,降低成本,具有广阔的应用前景.因此,文章研究并设计了基于深度学习的水果检测及成熟度分析系统,主要基于PyTorch深度学习框架搭建YOLOv5 算法对草莓、苹果和香蕉的成熟果实和未成熟果实进行检测识别.该系统能够极大地提高检测效率和精度,具有一定的现实意义与实用价值.

Abstract

In China,fruits have become one of the indispensable foods in people's life,and fruit detection and ripening analysis is an important research direction in the field of agricultural production and food processing.Traditional methods rely on manual operation,which is time-consuming and error-prone.The automated method based on deep learning can improve the accuracy and reduce the cost,which has the prospect of wide application.Therefore,this paper researches and designs a deep learning-based fruit detection and ripeness analysis system,which is mainly based on PyTorch deep learning framework to build YOLOv5 algorithm to detect and identify ripe and unripe fruits of strawberries,apples,and bananas,which can greatly improve the detection efficiency and accuracy,and it has a certain practical significance and practical value.

关键词

水果检测/成熟度分析/YOLOv5/深度学习

Key words

fruit detection/ripeness analysis/YOLOv5/deep learning

引用本文复制引用

基金项目

江苏省大学生创新创业训练计划项目(202213654045T)

出版年

2024
无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
段落导航相关论文