首页|基于深度学习的铁路信号传输节点异常干扰预测

基于深度学习的铁路信号传输节点异常干扰预测

扫码查看
针对铁路信号传输过程中频率波动导致的预测误差问题,文章设计了一种基于深度学习的异常干扰预测方法.该方法全面获取节点干扰数据,利用数据处理技术提取关键特征,反映信号异常情况.基于深度学习算法,文章构建了干扰信号异常检测框架,自动学习和识别异常模式.通过实时数据输入,该框架能迅速输出预测结果,准确预测异常干扰.实验证明,该方法平均预测误差距离为50.5 kHz,相比对照组降低85 kHz以上,实现了对铁路信号传输节点异常干扰的精准预测,为铁路安全稳定运行提供了有力保障.
Abnormal interference prediction of railway signal transmission nodes based on deep learning
In response to the prediction error caused by frequency fluctuations in railway signal transmission,this article proposes a deep learning based anomaly interference prediction method.This method comprehensively obtains node interference data,extracts key features using data processing techniques,and reflects signal anomalies.Based on deep learning algorithms,construct an interference signal anomaly detection framework to automatically learn and recognize abnormal patterns.Through real-time data input,the framework can quickly output prediction results and accurately predict abnormal interference.Experimental results have shown that the average prediction error distance of this method is 50.5 kHz,which is more than 85 kHz lower than the control group.It achieves accurate prediction of abnormal interference in railway signal transmission nodes and provides strong guarantees for the safe and stable operation of railways.

deep learning modelrailway signaltransmission nodeabnormal interference predictiontime domain skewness

朱德华

展开 >

国能朔黄铁路发展有限责任公司原平分公司,山西 原平 034100

深度学习模型 铁路信号 传输节点 异常干扰预测 时域偏度

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(19)