首页|多尺度融合特征卷积神经网络的图像分类算法研究

多尺度融合特征卷积神经网络的图像分类算法研究

扫码查看
针对深度卷积神经网络在进行图像分类时,随着深度的增加可能出现的梯度弥散以及由于卷积核尺度不合适出现的特征提取能力不足等问题,文章提出了一种多尺度融合特征的深度卷积神经网络.该网络的主要结构由包含多尺度卷积核的卷积层、多层感知机与池化层堆叠构成,在特征提取完成后,经过特征融合层与全连接层相连,输入Softmax分类器完成图像分类.实验结果表明,与深度卷积神经网络相比,该网络模型提高了CIFAR-10 数据集的图像分类精度,具有较强的鲁棒性.
Research on image classification algorithm based on multi-scale fusion features of convolutional neural network
When the deep convolutional neural networks are used for image classification,the problems such as gradient vanishing with increasing depth and the insufficient feature extraction ability due to inappropriate convolution kernel scale,a deep convolutional neural network with multi-scale fusion features is proposed to solve these problems.The main structure of this network consists of the convolutional layers containing multi-scale convolution kernels,stacked layers of perceptron,and pooling layers.After the feature extraction is completed,it is connected to fully connected layers through a feature fusion layer,and input into a Softmax classifier to complete image classification.The experimental result show that compared with deep convolutional neural network,the network model can improve the image classification accuracy of the CIFAR-10 dataset and have strong robustness.

image classificationconvolutional neural networkconvolution kernelfeature fusion

徐春雨、贾睿

展开 >

辽宁省交通高等专科学校,辽宁 沈阳 110122

图像分类 卷积神经网络 卷积核 特征融合

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(22)