首页|多尺度自适应注意力的数字媒体图像增强方法研究

多尺度自适应注意力的数字媒体图像增强方法研究

扫码查看
为优化数字媒体图像的视觉效果,文章引入一种创新的图像优化策略,该策略依托于多尺度自适应注意力机制.这种方法通过构建独特的网络架构,实现对图像多维度特征的精确捕捉与高效整合,有效降低内容的重复性,提升图像处理的效率与质量.文章运用拉普拉斯算子精准识别图像中的信息缺失,配套设计高效的损失函数,旨在全面补偿处理过程中的信息损耗,从而显著提升图像的整体质量.实验结果表明,采用该方法增强的图像在图像色彩、亮度和饱和度的综合质量评估指标上达到了0.9 以上,同时在结构相似性指数上也超过了0.85,这充分验证了该方法在图像增强领域的卓越性能.
Image enhancement methods in digital media with multi-scale adaptive attention
To optimize the visual effects of digital media images,this article introduces an innovative image optimization strategy that relies on a multi-scale adaptive attention mechanism.This method achieves precise capture and efficient integration of multi-dimensional features of images by constructing a unique network architecture,effectively reducing the repetition of content and improving the efficiency and quality of image processing.The article uses Laplace operator to accurately identify missing information in images and designs an efficient loss function to comprehensively compensate for information loss during the processing,thereby significantly improving the overall quality of the image.The experimental results show that the image enhanced by this method achieves over 0.9 on a comprehensive quality evaluation index in terms of color,brightness,and saturation,and also exceeds 0.85 in terms of structural similarity index,which fully verifies the outstanding performance of this method in the field of image enhancement.

multi-scale adaptive attentiondigital media imageimage enhancementLaplacian operatorloss function

肖瑜

展开 >

濮阳职业技术学院,河南 濮阳 457000

多尺度自适应注意力 数字媒体图像 图像增强 拉普拉斯算子 损失函数

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(22)