首页|基于改进蜣螂优化算法优化BP神经网络

基于改进蜣螂优化算法优化BP神经网络

Optimize BP neural network based on improved dung beetle optimization algorithm

扫码查看
文章提出了一种利用改进蜣螂优化(IDBO)算法优化BP 神经网络的新方法,通过Chebyshev混沌映射初始化种群,结合黄金正弦策略及动态权重系数实现高效搜索.基于MATLAB R2024a进行仿真,结果表明IDBO-BP模型在训练集和测试集上均表现优异,显著提升拟合度、泛化能力和预测精度,且收敛速度更快.此方法有效提升了神经网络性能,为解决复杂数据处理问题提供了新途径,展现了广阔应用前景.
A new method of optimizing BP neural network by using improved dung beetle optimization(IDBO)algorithm is proposed in this paper.The population is initialized by Chebyshev chaotic map,and the efficient search is realized by combining golden sine strategy and dynamic weight coefficient.Based on the MATLAB R2024a,the simulative result shows that the IDBO-BP model performs well on both the training set and the testing set,which significantly improves the fitting degree,generalization ability and prediction accuracy,and the convergence speed is faster.This method effectively improves the performance of neural networks,provides a new way to solve the complex data processing problems,and shows a broad application prospect.

BP neural networkdung beetle optimization algorithmgolden sine strategyChebyshev chaotic map

曹同宇、乔栋、郭子瑜、朱守健

展开 >

山西大同大学 煤炭工程学院,山西 大同 037009

山西大同大学 建筑与测绘工程学院,山西 大同 037009

BP神经网络 蜣螂优化算法 黄金正弦策略 Chebyshev混沌映射

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(22)