首页|基于机器学习的交易欺诈智能分析

基于机器学习的交易欺诈智能分析

扫码查看
随着在线交易的普及,交易欺诈问题日益严重,给消费者带来了巨大的损失.文章提出了一种基于机器学习的交易欺诈能分析在线系统,通过分析交易数据和用户行为模式来识别潜在的欺诈交易.文章采用机器学习算法,如决策树和神经网络,对大规模交易数据进行训练并评估系统在真实数据集上的性能.结果表明,该智能分析系统在准确性、召回率和F1 分数等指标上表现出色,能够有效地识别潜在的欺诈交易并进行实时预警.
Intelligent analysis of transaction fraud based on machine learning
With the increasing prevalence of online transactions,transaction fraud has become a growing concern,causing substantial losses to consumers.This paper presents a machine learning-based transaction fraud analysis system that identifies potential fraudulent transactions by analyzing transaction data and user behavior patterns.The system employs machine learning algorithms,such as decision trees and neural networks,to train on large-scale transaction data and evaluates its performance on real-world datasets.The results demonstrate that this intelligent analysis system exhibits outstanding performance in terms of accuracy,recall,and F1 score,effectively identifying potential fraudulent transactions and providing real-time alerts.

transaction fraudmachine learningdecision treesneural networksreal-time alerts

刘小群、栗宁、何光威

展开 >

南京传媒学院,江苏 南京 211172

交易欺诈 机器学习 决策树 神经网络 实时预警

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(23)