首页|医用球囊缺陷智能检测算法研究

医用球囊缺陷智能检测算法研究

扫码查看
针对医用球囊缺陷由人工检测效率低下,检测质量受人工经验和主观因素的影响大等问题,文章提出一种改进YOLOv5s算法的轻量级检测方法.为了实现更好的鲁棒性,文章根据医用球囊在生产中出现的缺陷情况,自主构建数据集.首先,将YOLOv5s的主干网络替换为FasterNet网络结构,大幅轻量化网络,提高检测速度.其次,引入内容感知特征重组(Content-Aware ReAssembly of FEatures,CARAFE)上采样算子,增大感受野,提高特征图的重建质量,从而提高模型检测精度.最后,在特征提取阶段引入坐标注意力机制(Coordinate Attention,CA),提升网络对小目标缺陷的检测能力.对该医用球囊缺陷数据集进行测试,与YOLOv5s原算法对比,该算法平均精度均值在提高1.7%的情况下,每秒浮点运算次数降低 8.4×109,权重大小减少 86.9%,至 7.5 MB,帧率每秒提升 12.7 帧,达到 71.5帧/s,模型整体大幅轻量化.
Research on intelligent defect detection methods in medical balloons
In response to issues such as low efficiency and quality variability in manual detection of defects in medical balloons due to human experience and subjective factors,a lightweight detection method based on improving the YOLOv5s algorithm is proposed.To achieve better robustness,this study autonomously constructed a dataset based on defect occurrences during medical balloon production.Firstly,the backbone network of YOLOv5s was replaced with the FasterNet network structure to significantly lighten the network while maintaining detection accuracy and improving detection speed.Secondly,the Content-Aware ReAssembly of FEatures(CARAFE)upsampling operator was introduced to increase the receptive field and enhance the reconstruction quality of feature maps,thereby improving the model's detection accuracy.Lastly,the Coordinate Attention(CA)mechanism was introduced in the feature extraction stage to enhance the network's ability to detect small target defects.Testing on the constructed dataset of medical balloon defects showed that compared to the original YOLOv5s algorithm,the proposed algorithm achieved an average precision mean average precision(mAP)improvement of 1.7%,reduced floating-point operations per second(FLOPS)by 8.4×109,decreased weight size by 86.9%to 7.5MB,and increased frame rate by 12.7 frames per second to 71.5 frames/s,significantly lightening the overall model.

medical balloondefect detectionYOLOv5FasterNetCACARAFE

范家琪、吴全玉、刘敏、邹虎风、姚敏、潘玲佼

展开 >

江苏理工学院 电气信息工程学院,江苏 常州 213001

厦门工学院 光电与通信工程学院,福建 厦门 361024

常美医疗器械有限公司,江苏 常州 213000

医用球囊 缺陷检测 YOLOv5 FasterNet 注意力机制 CARAFE

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(23)