首页|人工智能背景下高校数字化教学资源分类管理平台设计

人工智能背景下高校数字化教学资源分类管理平台设计

扫码查看
为了解决现有平台设计选取效果差、资源分类时耗长的问题,文章提出人工智能背景下高校数字化教学资源分类管理平台设计,利用人工智能技术优化资源分类过程。硬件设计上,以中央处理单元(Central Processing Unit,CPU)为核心,结合多维尺度(Multidimensional Scaling,MDS)分析寄存器和三级单周期布线控制器,优化内存地址排列并集成随机存取存储器(Random Access Memory,RAM)等组件,通过总线探针实现实时数据通信。软件设计上,采用加权网格算法计算资源分布,以此为依据进行资源聚类。平台架构基于云平台和移动端,实现资源数据的分类编码管理。通过知识图谱结构进行资源检索,提升管理效率。测试结果显示,资源选取成功率达 95%,分类时间缩短至 125 s内,显著提高了资源更新和维护的便捷性。
Design of classification management platform of university digital teaching resources under the background of artificial intelligence
In order to solve the problems of poor selection effect and long resource classification time in existing platform design,a design of a digital teaching resource classification management platform for universities under the background of artificial intelligence is proposed.The article uses artificial intelligence technology to optimize the resource classification process.In terms of hardware design,the central processing unit(CPU)is used as the core,combined with multidimensional scaling(MDS)registers and a three-level single cycle routing controller to optimize memory address arrangement,and integrate components such as random access memory(RAM)to achieve real-time data communication through bus probes.In terms of software design,a weighted grid algorithm is used to calculate resource distribution and cluster resources.The platform architecture is based on cloud platforms and mobile devices,achieving classification,coding,and management of resource data.Using knowledge graph structure for resource retrieval to improve management efficiency.The test results show that the success rate of resource selection reaches 95%,and the classification time is shortened to within 125 seconds,significantly improving the convenience of resource updates and maintenance.

artificial intelligenceuniversitydigital teaching resourcesclassified management

林楠、艾洪福、张宇博

展开 >

吉林农业大学,吉林 长春 130118

人工智能 高校 数字化教学资源 分类管理

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(24)