首页|基于RI-YOLO的学生行为检测算法

基于RI-YOLO的学生行为检测算法

扫码查看
针对学生行为检测算法准确率不高、易出现漏检误检问题,文章提出了一种改进的RI-YOLO学生行为检测算法。该算法通过引入感受野注意力卷积(Receptive-Field Attention Convolution,RFAConv)对C3 模块进行优化,提出新型的RFAC3 模块,可以更精确地捕捉细微的局部特征,提升网络特征提取能力。此外,采用基于辅助边框的交并比(Intersection over Union,IoU)损失函数Inner-IoU替代传统损失函数,加速模型的收敛速度。在学生课堂行为数据集 SCB-Dataset3 上验证表明,RI-YOLO平均精度mAP50 较YOLOv5 提升了1。5%,mAP50:95 提升了1。2%,与其他主流检测模型对比,展示出了优异检测效果。
Student behavior detection algorithm based on RI-YOLO
To address the issues of low accuracy in student behavior detection algorithms,which often lead to missed detections and false positives,the article proposes an improved student behavior detection algorithm based on YOLOv5s called RI-YOLO.The algorithm optimizes the C3 module by introducing Receptive-Field Attention Convolution(RFAConv),proposing a new RFAC3 module that can more accurately capture subtle local features,thereby enhancing the network's feature extraction capabilities.Additionally,it adopts an Inner-IoU loss function based on auxiliary bounding boxes to replace traditional loss functions,accelerating the convergence speed of the model.Testing on the student classroom behavior dataset SCB-Dataset3 shows that RI-YOLO improves mean average precision(mAP50)by 1.5%compared to YOLOv5,and mAP50:95 by 1.2%,demonstrating superior detection performance when compared with other mainstream detection models.

object detectionstudent behaviorRFAC3auxiliary bounding boxmean average precision

牛泽刚、赵玉兰

展开 >

吉林化工学院,吉林 吉林 132022

吉林农业科技学院,吉林 吉林 132101

目标检测 学生行为 RFAC3 辅助边框 平均精度

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(24)