首页|基于深度学习的桥梁缺陷检测研究

基于深度学习的桥梁缺陷检测研究

扫码查看
尽管近年来目标检测技术已取得显著进展,但在复杂环境中的多目标检测仍面临诸多挑战。为了解决这些问题,文章对Faster RCNN模型进行了改进。选择ResNet101 作为特征提取网络,替代传统的VGG16,以缓解因网络深度增加而引起的信息传递衰减问题,提高特征学习效率。此外,还引入了多尺度融合模块,该结构能够更有效地处理不同尺寸的目标,从而增强检测性能。实验结果表明,在桥梁缺陷检测任务中,经过这2 项改进的Faster RCNN模型表现优异,准确率达到了91。4%,平均准确率均值达到了90。6%。这对于及时发现并修复桥梁结构问题具有重要的实际应用价值。
Research on bridge defect detection based on deep learning
Despite significant advancements in object detection technology in recent years,multi-object detection in complex environments still faces numerous challenges.To address these issues,this study improved the faster RCNN model.Researchers opted for ResNet101 as the feature extraction network,replacing the traditional VGG16,to alleviate problems caused by information decay due to increased network depth and to enhance the efficiency of feature learning.Additionally,a multi-scale fusion module was introduced in the study,which can more effectively handle targets of different sizes,thereby enhancing detection performance.Experimental results show that the improved faster RCNN model performs excellently in bridge defect detection tasks,achieving an accuracy rate of 91.4%and mean average precision of 90.6%.It has significant practical application value for timely identification and repair of structural issues in bridges,providing strong technical support for bridge maintenance and management work.

bridge defectsdefects detectiondeep learning

王颖、张华

展开 >

江苏航运职业技术学院,江苏 南通 226010

桥梁缺陷 缺陷检测 深度学习

2024

无线互联科技
江苏省科学技术情报研究所

无线互联科技

影响因子:0.263
ISSN:1672-6944
年,卷(期):2024.21(24)