首页|基于遗传算法和LightGBM的网络安全态势感知模型

基于遗传算法和LightGBM的网络安全态势感知模型

扫码查看
针对传统烟草工业系统中的网络流量异常检测方法存在的特征间联系和上下文信息丢失等问题,提出了一种基于遗传算法改进的LightGBM模型,此模型能够使得模型避免陷入局部最优情况.首先通过计算构建树模型对数据降维,从高维数据中挖掘出对于检测效果影响重要的关键特征信息,并使用提出的模型对这些关键特征信息进行分析.为了评估模型的有效性与优越性,使用准确率和损失进行模型评价,并与其他网络流量异常检测模型Tabular model、TabNet、LightGBM、XGBoost进行对比.使用公开数据集CIC-IDS-2018进行实验分析.结果表明,在高特征的网络安全态势感知下,多分类和二分类的识别准确率分别达99.43%和99.87%,在低特征情况下,多分类和二分类的识别准确率分别达98.73%和99.39%,具有较高准确率以及良好的灵活性和鲁棒性.
Network traffic anomaly identification and detection based on genetic algorithm and LightGBM
This study proposes an improved LightGBM model based on genetic algorithm to avoid problems such as the connection between features and the loss of contextual information in the network traffic anomaly detection method in traditional tobacco indus-try systems.This model can avoid the model falling into local optimal situations.First,the data dimensionality is reduced by cal-culating and constructing a tree model,and key feature information that is important to the detection effect is mined from high-di-mensional data,and the proposed model is used to analyze this key feature information.To evaluate the effectiveness and superior-ity of the model,this paper uses accuracy and loss to evaluate the model and compares it with other network traffic anomaly detec-tion models Tabular model,TabNet,LightGBM,and XGBoost.Experimental analysis was conducted using the public data set CIC-IDS-2018.The results show that under high-feature network security situational awareness,the recognition accuracy of multi-class and two-class classification reaches 99.43%and 99.87%respectively.In the case of low features,the multi-class recogni-tion accuracy is 99.43%.The recognition accuracy of classification and binary classification reaches 98.73%and 99.39%re-spectively,which has high accuracy and good flexibility and robustness.

anomaly detectionmachine learninggenetic algorithmLightGBM

胡锐、徐芳、熊郁峰、熊洲宇、陈敏

展开 >

江西省烟草公司吉安市公司,江西 吉安 343009

异常检测 机器学习 遗传算法 LightGBM

2024

网络安全与数据治理
华北计算机系统工程研究所(中国电子信息产业集团有限公司第六研究所)

网络安全与数据治理

影响因子:0.348
ISSN:2097-1788
年,卷(期):2024.43(3)
  • 19