首页|基于生成对抗神经网络的流量生成方法研究

基于生成对抗神经网络的流量生成方法研究

扫码查看
网络仿真中的流量生成对于确保仿真效果至关重要.目前常见的网络流量生成器通常基于某种随机模型,生成的流量只能服从指定的随机分布.实际网络中的随机模型往往难以确定,导致现有模型对真实网络流量的仿真有一定的偏差.为了解决这些问题,提出了基于生成对抗神经网络的时空相关流量生成模型;对网络流量数据改进了其编码方式,并使用Z-score处理流量数据,使数据趋于标准正态分布;提出了一种网络流量时空相关性的度量方法.实验结果表明,相较于现有的基线生成方式,所提出的方法在真实性和相关性的度量上平均提高了 9%.
Traffic generation methods based on generative adversarial neural networks
Traffic generation in network simulation is crucial for ensuring simulation effectiveness.Currently,common network traffic generators are typically based on a certain random model,where the generated traffic adheres to a specified random distribu-tion.However,determining a realistic random model for actual network traffic is often challenging,leading to biases in current models when simulating real network traffic.To address these issues,this paper proposes a spatiotemporal-correlated traffic gener-ation model based on Generative Adversarial Neural Networks(GANs).The encoding method for network traffic data is im-proved,and Z-score is applied to process traffic data,making the data tend toward a standard normal distribution.Additionally,a measurement method for evaluating the spatiotemporal correlation of network traffic is introduced.Experimental results indicate that,compared to existing baseline generation methods,the proposed approach averages 9%improvement in measures of authen-ticity and correlation.

network simulationnetwork traffic generationgenerative adversarial neural networksspatiotemporal correlation

康未、李维皓、刘桐菊

展开 >

华北计算机系统工程研究所,北京 100083

网络仿真 网络流量生成 生成对抗神经网络 时空相关性

2024

网络安全与数据治理
华北计算机系统工程研究所(中国电子信息产业集团有限公司第六研究所)

网络安全与数据治理

影响因子:0.348
ISSN:2097-1788
年,卷(期):2024.43(6)