首页|基于自监督图神经网络和混合神经网络的入侵检测

基于自监督图神经网络和混合神经网络的入侵检测

扫码查看
为了解决现有网络入侵检测方法在特征提取单一、数据依赖强以及模型泛化能力差等方面的问题,提出了一种基于自监督图神经网络和混合神经网络的入侵检测方法.首先,通过自监督学习策略,利用图卷积网络提取网络流量数据中的结构特征,增强模型在无标签数据上的特征学习能力,从而降低对标注数据的依赖并提升泛化能力.其次,使用卷积神经网络提取网络流量中时间序列的空间特征,并通过长短时记忆网络建模时间依赖性,进行多视角特征提取,提高检测的全面性.最后,设计了一种特征融合策略,丰富模型特征表示,提升模型鲁棒性.在公开数据集上的实验结果表明,所提方法具有更高的准确率和F1值.
Intrusion detection based on self-supervised graph neural networks and hybrid neural networks
To address the issues of limited feature extraction,strong data dependency,and poor generalization ability in existing network intrusion detection methods,this paper proposes an intrusion detection method based on self-supervised graph neural net-works and hybrid neural networks.Firstly,through a self-supervised learning strategy,a graph convolutional network is employed to extract structural features from network traffic data,enhancing the model's ability to learn features from unlabeled data.This re-duces dependence on labeled data and improves generalization ability.Secondly,a convolutional neural network is used to extract spatial features from the time series of network traffic,and a long short-term memory network is employed to model temporal de-pendencies,enabling multi-view feature extraction and improving detection comprehensiveness.Finally,a feature fusion strategy is designed to enrich the model's feature representation and enhance its robustness.Experimental results on public datasets dem-onstrate that the proposed method achieves higher accuracy and F1 score.

self-supervised learninggraph neural networkhybrid neural networkintrusion detection

王明

展开 >

河北科技师范学院 网络技术中心,河北 秦皇岛 066000

自监督学习 图神经网络 混合神经网络 入侵检测

2024

网络安全与数据治理
华北计算机系统工程研究所(中国电子信息产业集团有限公司第六研究所)

网络安全与数据治理

影响因子:0.348
ISSN:2097-1788
年,卷(期):2024.43(9)
  • 4