首页|基于模仿学习和强化学习的启发式多智能体路径规划

基于模仿学习和强化学习的启发式多智能体路径规划

扫码查看
多智能体路径规划(Multi-Agent Path Finding,MAPF)扩展到大型动态环境中是一个越来越有挑战的问题.现实世界中,环境动态变化往往需要实时重新规划路径.在部分可观察环境中,使用强化学习方法学习分散的策略解决MAPF问题表现出较大潜力.针对智能体之间如何学会合作和环境奖励稀疏问题,提出基于模仿学习和强化学习的启发式多智能体路径规划算法.实验表明,该方法在高密度障碍环境中具有较好的性能和扩展性.
Heuristic multi-agent path finding VIA imitation learning and reinforcement learning
The extension of multi-agent path finding(MAPF)to large-scale dynamic environment is an increasingly challenging problem.In the real world,dynamic changes in the environment often require real-time re planning.Using reinforcement learning method to learn decentralized strategies in some observable environments shows great potential to solve MAPF problems.A heuris-tic multi-agent path planning algorithm based on imitation learning and reinforcement learning is proposed to address the problems of how intelligent agents learnt to cooperate and sparse environmental rewards.Experiments show that this method has good per-formance and scalability in high-density obstacle environment.

multi-agent path findingreinforcement learningimitation learningheuristic

郭传友、刘志飞、田景志、刘先忠

展开 >

中国人民解放军61150部队,陕西 榆林 719000

多智能体路径规划 强化学习 模仿学习 启发式

2024

网络安全与数据治理
华北计算机系统工程研究所(中国电子信息产业集团有限公司第六研究所)

网络安全与数据治理

影响因子:0.348
ISSN:2097-1788
年,卷(期):2024.43(9)
  • 2