首页|基于改进YOLOv8的森林火灾探测技术研究

基于改进YOLOv8的森林火灾探测技术研究

扫码查看
森林火灾探测是当前的一个重点研究方向,然而,真实的森林火灾场景中存在大量的负样本数据,严重影响目标探测的性能,同时边端侧部署需要更加轻量化的模型.针对这一问题,提出了一种改进的YOLOv8 方法,该方法首先引入EfficientViT模块到骨干网络(Backbone),通过级联分组注意力模块,减少计算开销;然后,在头部网络(Head)中引入CBAM模块,对骨干网络提取的特征进行特征增强,同时抑制噪声和无关信息;最后针对数据集的低质量样本,引入Wise-IoU损失函数,增强数据集训练效果.实验结果表明,改进后的YOLOv8 模型对森林火灾的检测精度达到79.5%,检测速度达到75 FPS,整个模型的参数量降低了5.7%,对森林火灾探测具有重要意义.
Research on forest fire detection technology based on improved YOLOv8
Forest fire detection is a key research direction at present.However,there are a large number of negative sample data in real forest fire scenarios,which seriously affects the performance of target detection.At the same time,edge to edge deploy-ment requires more lightweight models.To address this issue,this article proposes an improved YOLOv8 method,which firstly in-troduces the EfficientViT module to the backbone network and reduces computational overhead by cascading group attention mod-ules.Then,the CBAM module is introduced into the head network to enhance the features extracted by the backbone network,while suppressing noise and irrelevant information.Finally,for low-quality samples in the dataset,the Wise-IoU loss function is introduced to enhance the training effect of the dataset.The experimental results show that the improved YOLOv8 model achieves a detection accuracy of 79.5%for forest fires,a detection speed of 75 FPS,and a 5.7%reduction in the parameter count of the entire model,which is of great significance for forest fire detection.

YOLOv8forest fire detectionimage analysisEfficientViTattention mechanism

杜世泽、银皓、丰大军、句海洋、刘天龙、李帅蓉、姚云

展开 >

华北计算机系统工程研究所,北京 100083

YOLOv8 森林火灾探测 图像分析 EfficientViT 注意力机制

2024

网络安全与数据治理
华北计算机系统工程研究所(中国电子信息产业集团有限公司第六研究所)

网络安全与数据治理

影响因子:0.348
ISSN:2097-1788
年,卷(期):2024.43(10)