首页|6G业务场景的不完全多视图聚类分析

6G业务场景的不完全多视图聚类分析

扫码查看
在 6G网络中,由于业务种类繁杂且需求各不相同,5G网络中划分的三大业务场景已无法满足其粒度上的要求,这给 6G按需服务目标的实现带来了巨大挑战.针对海量杂乱的 6G场景和 6G场景分类中业务数据量庞大以及数据缺失问题,提出了一套基于业务关键性能指标的多维度场景聚类分析方案.该方案基于不完全多视图聚类技术,在上千种参数组合下使用肘部法和轮廓系数法进行调参聚类.聚类结果表明,提出的方案能在不完整的场景数据集中保证收敛,并达到较高的轮廓系数值.此外,通过对比不同比例的缺失数据聚类实验,所提出的 6G场景聚类方案能够有效完成对于不同程度缺失数据的多维度聚类.最后,结合原始数据和聚类标签,分析并提炼聚类得到了 11 类场景的场景知识及各场景的关键性能指标特征,从而为未来 6G网络中的新兴场景及业务提供方法基础和理论参考.
Incomplete multi-view clustering analysis of 6G business scenarios
In the 6G network,due to the variety of business types and different requirements,the three major business scenarios divided in the 5G network can no longer meet the granularity requirements,which brings great challenges to the realization of the goal of 6G on-demand services.Aiming at the massive and messy 6G scenarios and the huge amount of business data and data missing in the classification of 6G scenarios,this paper proposes a set of multi-dimensional scenario clustering analytical schemes based on business key performance indicators.The scheme is based on the incomplete multi-view clustering technology,and uses the elbow method and the silhouette coefficient method to perform parameter tuning clustering under thousands of parameter combinations.Clustering results show that the scheme proposed in this paper can guarantee convergence in incomplete scene datasets and achieve high silhouette coefficient values.In addition,by comparing the missing data clustering experiments with different proportions,the proposed 6G scene clustering scheme can effectively complete the multi-dimensional clustering for different degrees of missing data.Finally,this paper combines the original data and clustering labels,analyzes and refines the clustering to obtain the scene knowledge of 11 types of scenarios and the characteristics of key performance indicators of each scenario,so as to provide the method basis and theoretical reference for emerging scenarios and services in the future 6G network.

6 Gscene clusteringKPIincomplete multi-view clustering

张茹倩、承楠、陈文、李长乐

展开 >

西安电子科技大学 通信工程学院,陕西 西安 710071

上海交通大学 电子工程系,上海 200240

6G 场景聚类 关键性能指标 不完全多视图聚类

国家重点研发计划

2020YFB1807700

2024

西安电子科技大学学报(自然科学版)
西安电子科技大学

西安电子科技大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.837
ISSN:1001-2400
年,卷(期):2024.51(3)