Relatively accelerated stochastic gradient algorithm for a class of non-smooth convex optimization problem
The first order method is widely used in the fields such as machine learning,big data science,computer vision,etc.A crucial and standard assumption for almost all first order methods is that the gradient of the objective function has to be globally Lipschitz continuous,which,however,can't be satisfied by a lot of practical problems.By introducing stochasticity and acceleration to the vanilla GD(Gradient Descent)algorithm,a RASGD(Relatively Accelerated Stochastic Gradient Descent)algorithm is developed,and a wild relatively smooth condition rather than the gradient Lipschitz is needed to be satisfied by the objective function.The convergence of the RASGD is related to the UTSE(Uniformly Triangle Scaling Exponent).To avoid the cost of tuning this parameter,a ARASGD(Adaptively Relatively Accelerated Stochastic Gradient Descent)algorithm is further proposed.The theoretical convergence analysis shows that the objective function values of the iterates converge to the optimal value.Numerical experiments are conducted on the Poisson inverse problem and the minimization problem with the operator norm of Hessian of the objective function growing as a polynomial in variable norm,and the results show that the convergence performance of the ARASGD method and RASGD method is better than that of the RSGD method.