首页|面向无人平台的新型人工噪声生成与抑制

面向无人平台的新型人工噪声生成与抑制

扫码查看
无线通信因其广播信道的天然特性,面临被窃听的风险.针对无人机组网通信系统的物理层安全问题,考虑无人机平台因体积和功耗等因素信号处理能力受限,提出了一种适应无人机平台的新型人工噪声生成与抑制方法.发射端以期望信号作为参考,利用过去信号分段中符号的相位信息构建当前信号分段的乘性人工噪声;将过去的信号分段以不同权重叠加,构成当前信号分段的加性人工噪声.授权接收端通过相位补偿和差分操作分别抑制乘性和加性人工噪声.两种人工噪声既可以联合设计也可以独立设计,根据不同的信道环境选择合适的人工噪声波形.理论分析和仿真表明所提方法生成和抑制人工噪声的算法复杂度低,能有效恶化窃听信道的信噪比,提升系统安全容量,实现物理层安全通信.所提方法同样能应用于其他节点处理能力受限的大规模组网系统,为其提供物理层安全传输手段.
Novel artificial noise generation and suppression method for unmanned aerial vehicle networking
Wireless communication faces the risk of eavesdropping due to the natural characteristics of the broadcast channel.Aiming at the physical layer security of the unmanned aerial vehicle(UAV)networks,and considering that UAV platforms are limited in signal processing capability due to their limited size and power consumption,a novel artificial noise(AN)generation and suppression method adapted to UAV platforms is proposed.The transmitter takes the desired signal as a reference,and uses the phase information of the symbols in the past signal segments to construct the multiplicative artificial noise of the current signal segment.And the past signal segments are superimposed with different weights to construct the additive artificial noise of the current signal segment.The artificial noise is suppressed at the authorized receiver by phase compensation and differential operation.The two artificial noises can be designed either jointly or independently,and the appropriate AN waveforms are selected according to channel environments.Theoretical analysis and simulation show that the method has a low algorithm complexity,and that it can effectively deteriorate the signal-to-noise ratio of the eavesdropping channel,improve the security capacity of the system,and enhance the physical layer security.This method can also be applied to other large-scale networking systems whose nodes are limited in signal processing capacity and provide a means of secure transmission at the physical layer.

physical layer securityartificial noiseunmanned aerial vehicle networking

林朗、赵宏志、邵士海、唐友喜

展开 >

电子科技大学通信抗干扰全国重点实验室四川成都 611731

电磁空间认知与智能控制技术实验室北京10089

物理层安全 人工噪声 无人机组网

2024

西安电子科技大学学报(自然科学版)
西安电子科技大学

西安电子科技大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.837
ISSN:1001-2400
年,卷(期):2024.51(5)