首页|超像素分割和波段分割的高光谱图像去噪

超像素分割和波段分割的高光谱图像去噪

扫码查看
针对现有的高光谱图像去噪算法采用逐波段或者全波段方式去噪,未能充分利用高光谱图像波段相似性的问题,提出了超像素分割和波段分割的高光谱图像去噪算法.文中将构建双层图模型,包括上层图和下层图模型.首先,对高光谱图像应用超像素分割技术,得到一系列的超像素.对超像素内的像素建模为节点,像素之间用边连接,构建一系列下层图,从而充分利用高光谱图像的空间信息和保留边界信息.根据超像素分割结果,沿着波段维分割,形成超像素体,以充分利用高光谱图像的波段相似性.将超像素体建模为节点,超像素体之间用边连接,构建上层图.基于构建的图结构和图分割方式,将高光谱图像去噪问题归结为一系列的优化问题,在优化问题中利用克罗内克乘积图重新定义了图拉普拉斯正则项.最后,实验结果表明,与现有算法相比,文中所提算法具有更高的平均峰值信噪比、平均结构相似性和光谱差异性.
Hyperspectral image denoising based on superpixel segmentation and band segmentation
Existing hyperspectral image denoising algorithms adopt a band-by-band or full-band approach to denoising,which fails to make full use of the similarity of hyperspectral image bands.To address this problem,this paper proposes a hyperspectral image denoising algorithm based on superpixel segmentation and band segmentation.In this paper,we construct a two-layer graph,including the upper and lower layer graphs.First,superpixel segmentation is applied to the hyperspectral image to obtain a series of superpixels.In order to utilize the spatial information on the hyperspectral image and retain the boundary information,the pixels within the superpixels are modeled as nodes with the pixels connected with edges to construct a series of lower layer graphs.In order to utilize the band similarity of the hyperspectral image,superpixel volumes are formed by segmenting along the band dimension based on the superpixel segmentation results with the superpixel volumes modeled as nodes,and the superpixel volumes connected with edges to construct an upper layer graph.Based on the graph structure and graph segmentation,the hyperspectral image denoising problem is reduced to a series of optimization problems,in which the graph Laplacian regularization is redefined using the Kronecker graph product.Finally,experimental results show that the proposed algorithm has a higher mean signal-to-noise ratio,mean structural similarity index measure and erreur relative globale adimensionnelle de synthese compared with the existing algorithms.

hyperspectral image denoisinggraph signal processingsuperpixel segmentationband segmentationgraph Laplacian regularization

李华君、蒋俊正、周芳、全英汇

展开 >

桂林电子科技大学信息与通信学院,广西壮族自治区桂林 541004

西安电子科技大学杭州研究院,浙江 杭州 311231

西安电子科技大学电子工程学院,陕西西安 710071

中国计量大学信息工程学院,浙江 杭州 310018

展开 >

高光谱图像去噪 图信号处理 超像素分割 波段分割 图拉普拉斯正则项

2024

西安电子科技大学学报(自然科学版)
西安电子科技大学

西安电子科技大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.837
ISSN:1001-2400
年,卷(期):2024.51(5)