首页|耦合敏感性分析与两阶段马尔科夫链蒙特卡洛算法的地下水污染溯源辨识

耦合敏感性分析与两阶段马尔科夫链蒙特卡洛算法的地下水污染溯源辨识

扫码查看
为高精度地开展地下水污染溯源辨识,在对污染源参数进行敏感性分析的基础上,研究应用两阶段马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法辨识确定污染源参数;同时,探索应用多层感知机(Multi-layer Perceptron,MLP)方法构建地下水污染运移数值模型的代理模型,用以提高地下水污染溯源辨识的效率.为验证上述方法的有效性和可行性,开展了两个数值算例研究.结果表明:采用MLP方法构建的代理模型对地下水污染运移数值模型的逼近精度高,不仅能够有效提升地下水污染溯源辨识效率,还能保持良好的计算精度;所提出的耦合敏感性分析与两阶段MCMC算法能够显著提升低敏感性污染源参数的辨识精度.
Coupled Sensitivity Analysis and Two-stage MCMC Algorithm for Groundwater Pollution Source Identification
To achieve high-precision groundwater pollution source identification,the two-stage Markov Chain Monte Carlo(MCMC)algorithm was used to identify the pollution source parameters based on sensitivity analysis of pollution source parameters.At the same time,the surrogate model of the numerical model of groundwater pollution transport using multi-layer perceptron(MLP)method was explored to improve the efficiency of groundwater pollution source identification.Two numerical examples were implemented to verify the effectiveness and feasibility of the above methods.The results show that the surrogate models constructed by the MLP method has high approximation accuracy for the numerical model of groundwater pollution transport,which can not only effectively improve the efficiency of groundwater pollution source identification,but also maintain good calculation accuracy.The proposed coupled sensitivity analysis and two-stage MCMC algorithm can significantly improve the identification accuracy of pollution source parameters with low sensitivity.

groundwaterpollution transportsource identificationnumerical modeltwo-stage MCMC algorithmsensitivity analysisMLPsurrogate model

李子乐、安永凯、闫雪嫚

展开 >

长安大学水利与环境学院,陕西西安 710054

长安大学旱区地下水文与生态效应教育部重点实验室,陕西西安 710054

西北大学城市与环境学院,陕西西安 710127

地下水 污染运移 溯源辨识 数值模型 两阶段马尔科夫链蒙特卡洛算法 敏感性分析 多层感知机 代理模型

国家自然科学基金项目中国博士后科学基金项目陕西省自然科学基础研究计划项目

421022872020M6833992023-JC-QN-0290

2024

地球科学与环境学报
长安大学

地球科学与环境学报

CSTPCD北大核心
影响因子:1.422
ISSN:1672-6561
年,卷(期):2024.46(5)